- Award ID(s):
- 1809640
- PAR ID:
- 10179052
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 20
- Issue:
- 12
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The microstructure, phase behavior, mechanical properties, and corrosion properties of a series of Al10Cr15(Fe3Mn)75−x(Ni)x medium-entropy alloys (MEAs) spanning 0–20 at% Ni were studied to elucidate the chemistry-structure-property relationship of this system as a function of Ni content. This work demonstrates that from an initial BCC phase Al10Cr15(Fe3Mn)75 MEA, Ni additions of 5 and 10 at% result in the formation of ordered B2-phase precipitates due to interaction of Ni with Al, resulting in high hardness (∼475 HV). Further Ni addition to 15 at% leads to a dual-phase FCC+BCC structure, with B2 phase precipitates distributed in the BCC matrix relatively rich in Al and Ni but depleted in Cr. This dual-phase structure has a high yield strength (YS) of 600 MPa with a total elongation of 15%. Additionally, the B2 precipitates in BCC phase serve as preferential sites for corrosion in 0.6 M NaCl. Increasing Ni content to 20 at% results in lower YS of 300 MPa, but a significant improvement in ductility and corrosion resistance due to the increased FCC phase fraction.more » « less
-
The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys were composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively.more » « less
-
Alloys of tungsten tetraboride (WB4) with the addition of C and Si were prepared by arc-melting of the constituent elements. The phase purity was established by powder X-ray diffraction (PXRD) and surface morphology by scanning electron microscopy (SEM) analysis. Vickers hardness measurements showed hardness enhancement for alloys with a nominal composition of (W0.98Si0.02):11.6B and (W0.95C0.05):11.6B of 52.2 ± 3.0 and 50.5 ± 2.5 GPa, respectively, compared to 41.2 ± 1.4 GPa for pure WB4. (W0.92Zr0.08):11.6B was determined in previous work to have a hardness of 55.9 ± 2.8 GPa. Bulk moduli were calculated following analysis of high-pressure radial diffraction data and were determined to be 329 ± 4 (K0′ = 2) and 390 ± 9 (K0′ = 0.6) GPa for 8 atom % Zr and 5 atom % C-doping, respectively, compared to 326–339 GPa for pure WB4. Computational analysis was used to determine the dopant positions in the crystal structure, and it was found that Zr primarily substitutes W in the 2c position, Si substitutes for the entire B3 trimers, and C inserts in the Bhex-layer. The hardness enhancement in the case of Zr-doping is attributed primarily to extrinsic hardness effects (nanograin morphology), in the case of C─to intrinsic effects (interlayer bond strengthening), and in the intermediate case of Si─to both intrinsic and extrinsic effects (bond strengthening and fine surface morphology).more » « less
-
A boron-rich boron–carbide material (B4+δC) was synthesized by spark plasma sintering of a ball-milled mixture of high-purity boron powder and graphitic carbon at a pressure of 7 MPa and a temperature of 1930 °C. This high-pressure, high-temperature synthesized material was recovered and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Vickers hardness measurements, and thermal oxidation studies. The X-ray diffraction studies revealed a single-phase rhombohedral structure (space group R-3m) with lattice parameters in hexagonal representation as a = 5.609 ± 0.007 Å and c = 12.082 ± 0.02 Å. The experimental lattice parameters result in a value of δ = 0.55, or the composition of the synthesized compound as B4.55C. The high-resolution scans of boron binding energy reveal the existence of a B-C bond at 188.5 eV. Raman spectroscopy reveals the existence of a 386 cm−1 vibrational mode representative of C-B-B linear chain formation due to excess boron in the lattice. The measured Vickers microhardness at a load of 200 gf shows a high hardness value of 33.8 ± 2.3 GPa. Thermal gravimetric studies on B4.55C were conducted at a temperature of 1300 °C in a compressed dry air environment, and its behavior is compared to other high-temperature ceramic materials such as high-entropy transition metal boride. The high neutron absorption cross section, high melting point, high mechanical strength, and thermal oxidation resistance make this material ideal for applications in extreme environments.
-
Abstract Zirconium carbide (ZrC) powder, batched to a ratio of 0.98 C/Zr, was prepared by carbothermal reduction of ZrO2with carbon black. Nominally phase‐pure ZrC powder had a mean particle size of 2.4 μm. The synthesized powder was hot‐pressed at 2150°C to a relative density of > 95%. The mean grain size was 2.7 ± 1.4 μm with a maximum observed grain size of 17.5 μm. The final hot‐pressed billets had a C/Zr ratio of 0.92, and oxygen content of 0.5 wt%, as determined by gas fusion analysis. The mechanical properties of ZrC0.92O0.03were measured at room temperature. Vickers’ hardness decreased from 19.5 GPa at a load of 0.5 kgf to 17.0 GPa at a load of 1 kgf. Flexural strength was 362.3 ± 46 MPa, Young's modulus was 397 ± 13 MPa, and fracture toughness was 2.9 ± 0.1 MPa•m1/2. Analysis of mechanical behavior revealed that the largest ZrC grains were the strength‐limiting flaw in these ceramics.