Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is βstretch if π is a simple (nonselfintersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P , the length of the subcurve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the βstretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a βstretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in amore »
Discrete Planar Map Matching
Route reconstruction is an important application for Geographic Information Systems (GIS) that rely heavily upon GPS data and other location data from IoT devices. Many of these techniques rely on geometric methods involving the \frechet\ distance to compare curve similarity. The goal of reconstruction, or map matching, is to find the most similar path within a given graph to a given input curve, which is often approximate location data. This process can be approximated by sampling the curves and using the \dfd. Due to power and coverage constraints, the GPS data itself may be sparse causing improper constraints along the edges during the reconstruction if only the continuous \frechet\ distance is used. Here, we look at two variations of discrete map matching: one constraining the walk length and the other limiting the number of vertices visited in the graph. %, and the constraint that the walk may not selfintersect. We give an efficient algorithm to solve the question based on walk length showing it is in \textbf{P}. We prove the other problem is \npc\ and the minimization variant is \apx\ while also giving a parameterized algorithm to solve the problem.
 Award ID(s):
 1817602
 Publication Date:
 NSFPAR ID:
 10179147
 Journal Name:
 Proceedings of the 31st Canadian Conference in Computational Geometry (CCCG 2019)
 Sponsoring Org:
 National Science Foundation
More Like this


We consider several variants of the mapmatching problem, which seeks to find a path Q in graph G that has the smallest distance to a given trajectory P (which is likely not to be exactly on the graph). In a typical application setting, P models a noisy GPS trajectory from a person traveling on a road network, and the desired path Q should ideally correspond to the actual path in G that the person has traveled. Existing mapmatching algorithms in the literature consider all possible paths in G as potential candidates for Q. We find solutions to the mapmatching problem under different settings. In particular, we restrict the set of paths to shortest paths, or concatenations of shortest paths, in G. As a distance measure, we use the Fréchet distance, which is a suitable distance measure for curves since it takes the continuity of the curves into account.

Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "onthefly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sublinear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the ErdösRényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous localaccess implementations for random graphs, we support VertexPair and NextNeighbor queries. In addition, we introduce a new RandomNeighbor query. Next, we give the first localaccess implementation for AllNeighbors queries inmore »

Realtime decision making in IoT applications relies upon spaceefficient evaluation of queries over streaming data. To model the uncertainty in the classification of data being processed, we consider the model of probabilistic strings  sequences of discrete probability distributions over a finite set of events, and initiate the study of space complexity of streaming computation for different classes of queries over such probabilistic strings. We first consider the problem of computing the probability that a word, sampled from the distribution defined by the probabilistic string read so far, is accepted by a given deterministic finite automaton. We show that this regular pattern matching problem can be solved using space that is only polylogarithmic in the string length (and polynomial in the size of the DFA) if we are allowed a multiplicative approximation error. Then we show how to generalize this result to quantitative queries specified by additive cost register automata  these are automata that map strings to numerical values using finite control and registers that get updated using linear transformations. Finally, we consider the case when updates in such an automaton involve tests, and in particular, when there is a counter variable that can be either incremented or decrementedmore »

Graph based nonlinear reference structures such as variation graphs and colored de Bruijn graphs enable incorporation of full genomic diversity within a population. However, transitioning from a simple stringbased reference to graphs requires addressing many computational challenges, one of which concerns accurately mapping sequencing read sets to graphs. Pairedend Illumina sequencing is a commonly used sequencing platform in genomics, where the pairedend distance constraints allow disambiguation of repeats. Many recent works have explored provably good indexbased and alignmentbased strategies for mapping individual reads to graphs. However, validating distance constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrixmatrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated using real reference graphs, including a human MHC variation graph, and a pangenome deBruijn graph built using genomes of 20 B. anthracis strains. While the onetime indexing time can vary from a few minutes to a few hours usingmore »