skip to main content


Title: Reverse shortest path problem for unit-disk graphs
Given a set P of n points in the plane, the unit-disk graph Gr(P) with respect to a parameter r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r (the weight of the edge is 1 in the unweighted case and is the distance between p and q in the weighted case). Given a value \lambda>0 and two points s and t of P, we consider the following reverse shortest path problem: computing the smallest r such that the shortest path length between s and t in Gr(P) is at most \lambda. In this paper, we present an algorithm of O(\lfloor \lambda \rfloor \cdot n log n) time and another algorithm of O(n^{5/4} log^{7/4} n) time for the unweighted case, as well as an O(n^{5/4} log^{5/2} n) time algorithm for the weighted case. We also consider the L1 version of the problem where the distance of two points is measured by the L1 metric; we solve the problem in O(n log^3 n) time for both the unweighted and weighted cases.  more » « less
Award ID(s):
2300356
PAR ID:
10445661
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of computational geometry
Volume:
14
Issue:
1
ISSN:
1920-180X
Page Range / eLocation ID:
14 - 47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Given a weighted planar bipartite graph G ( A ∪ B , E ) where each edge has an integer edge cost, we give an Õ( n 4/3 log nC ) time algorithm to compute minimum-cost perfect matching; here C is the maximum edge cost in the graph. The previous best-known planarity exploiting algorithm has a running time of O ( n 3/2 log n ) and is achieved by using planar separators (Lipton and Tarjan ’80). Our algorithm is based on the bit-scaling paradigm (Gabow and Tarjan ’89). For each scale, our algorithm first executes O ( n 1/3 ) iterations of Gabow and Tarjan’s algorithm in O ( n 4/3 ) time leaving only O ( n 2/3 ) vertices unmatched. Next, it constructs a compressed residual graph H with O ( n 2/3 ) vertices and O ( n ) edges. This is achieved by using an r -division of the planar graph G with r = n 2/3 . For each partition of the r -division, there is an edge between two vertices of H if and only if they are connected by a directed path inside the partition. Using existing efficient shortest-path data structures, the remaining O ( n 2/3 ) vertices are matched by iteratively computing a minimum-cost augmenting path, each taking Õ( n 2/3 ) time. Augmentation changes the residual graph, so the algorithm updates the compressed representation for each partition affected by the change in Õ( n 2/3 ) time. We bound the total number of affected partitions over all the augmenting paths by O ( n 2/3 log n ). Therefore, the total time taken by the algorithm is Õ( n 4/3 ). 
    more » « less
  2. Given a set of points $P = (P^+ \sqcup P^-) \subset \mathbb{R}^d$ for some constant $d$ and a supply function $\mu:P\to \mathbb{R}$ such that $\mu(p) > 0~\forall p \in P^+$, $\mu(p) < 0~\forall p \in P^-$, and $\sum_{p\in P}{\mu(p)} = 0$, the geometric transportation problem asks one to find a transportation map $\tau: P^+\times P^-\to \mathbb{R}_{\ge 0}$ such that $\sum_{q\in P^-}{\tau(p, q)} = \mu(p)~\forall p \in P^+$, $\sum_{p\in P^+}{\tau(p, q)} = -\mu(q) \forall q \in P^-$, and the weighted sum of Euclidean distances for the pairs $\sum_{(p,q)\in P^+\times P^-}\tau(p, q)\cdot ||q-p||_2$ is minimized. We present the first deterministic algorithm that computes, in near-linear time, a transportation map whose cost is within a $(1 + \varepsilon)$ factor of optimal. More precisely, our algorithm runs in $O(n\varepsilon^{-(d+2)}\log^5{n}\log{\log{n}})$ time for any constant $\varepsilon > 0$. While a randomized $n\varepsilon^{-O(d)}\log^{O(d)}{n}$ time algorithm for this problem was discovered in the last few years, all previously known deterministic $(1 + \varepsilon)$-approximation algorithms run in~$\Omega(n^{3/2})$ time. A similar situation existed for geometric bipartite matching, the special case of geometric transportation where all supplies are unit, until a deterministic $n\varepsilon^{-O(d)}\log^{O(d)}{n}$ time $(1 + \varepsilon)$-approximation algorithm was presented at STOC 2022. Surprisingly, our result is not only a generalization of the bipartite matching one to arbitrary instances of geometric transportation, but it also reduces the running time for all previously known $(1 + \varepsilon)$-approximation algorithms, randomized or deterministic, even for geometric bipartite matching. In particular, we give the first $(1 + \varepsilon)$-approximate deterministic algorithm for geometric bipartite matching and the first $(1 + \varepsilon)$-approximate deterministic or randomized algorithm for geometric transportation with no dependence on $d$ in the exponent of the running time's polylog. As an additional application of our main ideas, we also give the first randomized near-linear $O(\varepsilon^{-2} m \log^{O(1)} n)$ time $(1 + \varepsilon)$-approximation algorithm for the uncapacitated minimum cost flow (transshipment) problem in undirected graphs with arbitrary \emph{real} edge costs. 
    more » « less
  3. For unweighted graphs, finding isometric embeddings of a graph G is closely related to decompositions of G into Cartesian products of smaller graphs. When G is isomorphic to a Cartesian graph product, we call the factors of this product a factorization of G. When G is isomorphic to an isometric subgraph of a Cartesian graph product, we call those factors a pseudofactorization of G. Prior work has shown that an unweighted graph’s pseudofactorization can be used to generate a canonical isometric embedding into a product of the smallest possible pseudofactors. However, for arbitrary weighted graphs, which represent a richer variety of metric spaces, methods for finding isometric embeddings or determining their existence remain elusive, and indeed pseudofactorization and factorization have not previously been extended to this context. In this work, we address the problem of finding the factorization and pseudofactorization of a weighted graph G, where G satisfies the property that every edge constitutes a shortest path between its endpoints. We term such graphs minimal graphs, noting that every graph can be made minimal by removing edges not affecting its path metric. We generalize pseudofactorization and factorization to minimal graphs and develop new proof techniques that extend the previously proposed algorithms due to Graham and Winkler [Graham and Winkler, ’85] and Feder [Feder, ’92] for pseudofactorization and factorization of unweighted graphs. We show that any n-vertex, m-edge graph with positive integer edge weights can be factored in O(m2) time, plus the time to find all pairs shortest paths (APSP) distances in a weighted graph, resulting in an overall running time of O(m2+n2 log log n) time. We also show that a pseudofactorization for such a graph can be computed in O(mn) time, plus the time to solve APSP, resulting in an O(mn + n2 log log n) running time. 
    more » « less
  4. Bojanczyk, Mikolaj ; Chekuri, Chandra (Ed.)
    Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case. 
    more » « less
  5. We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer exact distance queries. The main tension in this problem is between space S and query time Q , and since the mid-1990s all results had polynomial time-space tradeoffs, e.g., Q = ~ Θ( n/√ S ) or Q = ~Θ( n 5/2 /S 3/2 ). In this article we show that there is no polynomial tradeoff between time and space and that it is possible to simultaneously achieve almost optimal space n 1+ o (1) and almost optimal query time n o (1) . More precisely, we achieve the following space-time tradeoffs: n 1+ o (1) space and log 2+ o (1) n query time, n log 2+ o (1) n space and n o (1) query time, n 4/3+ o (1) space and log 1+ o (1) n query time. We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams and develop new algorithms for the point location problem itself using several partially persistent dynamic tree data structures. 
    more » « less