skip to main content


Title: Field induced fragmentation spectra from reactive stage-tandem differential mobility spectrometry
A planar tandem differential mobility spectrometer was integrated with a middle reactive stage to fragment ions which were mobility selected in a first analyzer stage using characteristic compensation and separation fields. Fragmentation occurred in air at ambient pressure of 660 Torr (8.8 kPa) with electric fields of 10 to 35 kV cm −1 (E/N of 52 to 180 Td) between two 1 mm wide metal strips, located on each analyzer plate between the first and second mobility stages. Field induced fragmentation (FIF) spectra were produced by characterizing, in a last stage, the mobilities of fragment ions from protonated monomers of 43 oxygen-containing volatile organic compounds from five chemical classes. The extent of fragmentation was proportional to E/N with alcohols, aldehydes, and ethers undergoing multiples steps of fragmentation; acetates fragmented only to a single ion, protonated acetic acid. In contrast, fragmentation of ketones occurred only for methyl i-butyl ketone and 2-hexanone. Fragment ion identities were supported by mass-analysis and known fragmentation routes and suggested that field induced fragmentation at ambient pressure can introduce structural information into FIF spectra, establishing a foundation for chemical identification using mobility methods.  more » « less
Award ID(s):
1827525
NSF-PAR ID:
10179195
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
145
Issue:
15
ISSN:
0003-2654
Page Range / eLocation ID:
5314 to 5324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  2. null (Ed.)
    We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine–1-methylcytosine base pair (HG-[9MG·1MC + H] + ), which aims to address the mystery of the literature reported “anomaly” in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H] + (reported recently by Sun et al. ; Phys. Chem. Chem. Phys. , 2020, 22 , 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice–Ramsperger–Kassel–Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H] + over [9MG + H] + in the fragment ions of HG-[9MG·1MC + H] + . The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H] + vs. the non-statistical behavior of WC-[9MG·1MC + H] + in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3′ of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e. , HG-[9MG·1MC + H] + ·H 2 O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H] + , secondary methanol elimination was observed via the S N 2 reaction of water with nucleobase methyl groups. 
    more » « less
  3. Abstract

    Peptoids belong to a class of sequence‐controlled polymers comprising ofN‐alkylglycine. This study focuses on using tandem mass spectrometry techniques to characterize the fragmentation patterns of a set of singly and doubly protonated peptoids consisting of one basic residue placed at different positions. The singly protonated peptoids fragment by producing predominately high‐abundant C‐terminal ions called Y‐ions and low‐abundant N‐terminal ions called B‐ions. Computational studies suggest that the proton affinity (PA) of the C‐terminal fragments is generally higher than that of the N‐terminal fragments, and the PA of the former increases as the fragments are elongated. The B‐ions are likely formed upon dissociating the proton‐activated amide bonds via an oxazolone structure, and the Y‐ions are produced subsequently by abstracting a proton from the newly formed B‐ions, which is energetically favored. The doubly protonated peptoids prefer to fragment closest to either the N‐ or the C‐terminus and produce corresponding B/Y‐ion pairs. The basic residue seems to dictate the preferred fragmentation site, which may be the result of minimizing the repulsion between the two charges. Water and terminal neutral losses are a facile process accompanying the peptoid fragmentation in both charge states. The patterns appear to be highly influenced by the location of the basic residue.

     
    more » « less
  4. Decavanadate (V 10 O 28 6− or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared by other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V 10 O 26 2− anion was displayed in the negative-ion ESI mass spectra. None of the V 10 O 26 cations were detected in ESI MS, and only a low-abundance signal was observed for V 10 O 26 anions with a single negative charge, indicating that the presence of abundant V 10 O 26 2− anions in ESI MS reflects gas-phase instability of V 10 O 28 anions carrying two charges. The gas-phase origin of the V 10 O 26 2− anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H 4 V 10 O 28 2− ), resulting in a facile loss of H 2 O molecules and giving rise to V 10 O 26 2− as the lowest-mass fragment ion. Water loss was also observed for V 10 O 28 anions carrying an odd number of hydrogen atoms ( e.g. , H 5 V 10 O 28 − ), followed by a less efficient and incomplete removal of an OH˙ radical, giving rise to both HV 10 O 26 − and V 10 O 25 − fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase. 
    more » « less
  5. Abstract

    Alkali and alkaline earth metal adducts of a branched glycan, XXXG, were analyzed with helium charge transfer dissociation (He‐CTD) and low‐energy collision‐induced dissociation (LE‐CID) to investigate if metalation would impact the type of fragments generated and the structural characterization of the analyte. The studied adducts included 1+ and 2+ precursors involving one or more of the cations: H+, Na+, K+, Ca2+, and Mg2+. Regardless of the metal adduct, He‐CTD generated abundant and numerous glycosidic and cross‐ring cleavages that were structurally informative and able to identify the 1,4‐linkage and 1,6‐branching patterns. In contrast, the LE‐CID spectra mainly contained glycosidic cleavages, consecutive fragments, and numerous neutral losses, which complicated spectral interpretation. LE‐CID of [M + K + H]2+and [M + Na]+precursors generated a few cross‐ring cleavages, but they were not sufficient to identify the 1,4‐linkage and 1,6‐branching pattern of the XXXG xyloglucan. He‐CTD predominantly generated 1+ fragments from 1+ precursors and 2+ product ions from 2+ precursors, although both LE‐CID and He‐CTD were able to generate 1+ product ions from 2+ adducts of magnesium and calcium. The singly charged fragments derive from the loss of H+from the metalated product ions and the formation of a protonated complementary product ion; such observations are similar to previous reports for magnesium and calcium salts undergoing electron capture dissociation (ECD) activation. However, during He‐CTD, the [M + Mg]2+precursor generated more singly charged product ions than [M + Ca]2+, either because Mg has a higher second ionization potential than Ca or because of conformational differences and the locations of the charging adducts during fragmentation. He‐CTD of the [M + 2Na]2+and the [M + 2 K]2+precursors generated singly charged product ions from the loss of a sodium ion and potassium ion, respectively. In summary, although the metal ions influence the mass and charge state of the observed product ions, the metal ions had a negligible effect on the types of cross‐ring cleavages observed.

     
    more » « less