Undergraduates enrolled in large, active learning courses must self-regulate their learning (self-regulated learning [SRL]) by appraising tasks, making plans, setting goals, and enacting and monitoring strategies. SRL researchers have relied on self-report and learner-mediated methods during academic tasks studied in laboratories and now collect digital event data when learners engage with technology-based tools in classrooms. Inferring SRL processes from digital events and testing their validity is challenging. We aligned digital and verbal SRL event data to validate digital events as traces of SRL and used them to predict achievement in lab and course settings. In Study 1, we sampled a learning task from a biology course into a laboratory setting. Enrolled students (N = 48) completed the lesson using digital resources (e.g., online textbook, course site) while thinking aloud weeks before it was taught in class. Analyses confirmed that 10 digital events reliably co-occurred ≥70% of the time with verbalized task definition and strategy use macroprocesses. Some digital events co-occurred with multiple verbalized SRL macroprocesses. Variance in occurrence of validated digital events was limited in lab sessions, and they explained statistically nonsignificant variance in learners’ performance on lesson quizzes. In Study 2, lesson-specific digital event data from learners (N = 307) enrolled in the course (but not in Study 1) predicted performance on lesson-specific exam items, final exams, and course grades. Validated digital events also predicted final exam and course grades in the next semester (N = 432). Digital events can be validated to reflect SRL processes and scaled to explain achievement in naturalistic undergraduate education settings. Educational Impact and Implications Statement Instructors often have difficulty identifying and helping struggling students in courses with hundreds of students. Digital trace data can be used to efficiently and effectively identify struggling students in these large courses, but such data are often difficult to interpret with confidence. In our study, we found that using verbal trace data to augment and validate our inferences about the meaning of digital trace data resulted in a powerful set of predictors of students’ achievement. These validated digital trace data can be used to not only identify students in need of support in large classes, but also to understand how to target interventions to the aspects of learning that are causing students the most difficulty.
more »
« less
Adding self-regulated learning instruction to an introductory physics class
Self-regulated learning (SRL) is an essential factor in academic success. Self-regulated learning is a process where learners set clear goals, monitor progress toward attainment of those goals, and adapt their strategies to improve their learning. Because SRL is often not explicitly integrated into the classroom, students struggle to identify and use learning techniques empirically proven to be more successful than others. SRL is a learned skill students can develop over time that has been found to be related to high achievement and self-efficacy. This paper examines the effects of introducing SRL strategies into an undergraduate introductory physics classroom. The degree to which the students were self-regulated learners was correlated with their test averages (r = 0.23, p < 0.05). Students reported that they found the SRL instruction helpful (3.5 out of 5.0 on a 5-point scale) and 86% of the students felt the time spent on the instruction was generally appropriate. Students’ preferred study methods changed over the course of the semester, indicating that students applied SRL by adapting their learning processes based on which methods were most effective in helping them study for an upcoming exam and opting not to use techniques no longer perceived as useful. Higher achieving students were more likely to settle on highly effective techniques by the end of the semester, while lower achieving students continued to modify their learning processes.
more »
« less
- Award ID(s):
- 1833694
- PAR ID:
- 10511058
- Publisher / Repository:
- American Association of Physics Teachers
- Date Published:
- Journal Name:
- 2023 PERC Proceedings
- Page Range / eLocation ID:
- 199 to 204
- Format(s):
- Medium: X
- Location:
- Sacramento, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Success in online and blended courses requires engaging in self-regulated learning (SRL), especially for challenging STEM disciplines, such as physics. This involves students planning how they will navigate course assignments and activities, setting goals for completion, monitoring their progress and content understanding, and reflecting on how they completed each assignment. Based on Winne & Hadwin’s COPES model, SRL is a series of events that temporally unfold during learning, impacted by changing internal and external factors, such as goal orientation and content difficulty. Thus, as goal orientation and content difficulty change throughout a course, so might students’ use of SRL processes. This paper studies how students’ SRL behavior and achievement goal orientation change over time in a large ( N = 250) college introductory level physics course taught online. Students’ achievement goal orientation was measured by repeated administration of the achievement goals questionnaire-revised (AGQ-R). Students’ SRL behavior was measured by analyzing their clickstream event traces interacting with online learning modules via a combination of trace clustering and process mining. Event traces were first divided into groups similar in nature using agglomerative clustering, with similarity between traces determined based on a set of derived characteristics most reflective of students’ SRL processes. We then generated causal nets for each cluster of traces via process mining and interpreted the underlying behavior and strategy of each causal net according to the COPES SRL framework. We then measured the frequency at which students adopted each causal net and assessed whether the adoption of different causal nets was associated with responses to the AGQ-R. By repeating the analysis for three sets of online learning modules assigned at the beginning, middle, and end of the semester, we examined how the frequency of each causal net changed over time, and how the change correlated with changes to the AGQ-R responses. Results have implications for measuring the temporal nature of SRL during online learning, as well as the factors impacting the use of SRL processes in an online physics course. Results also provide guidance for developing online instructional materials that foster effective SRL for students with different motivational profiles.more » « less
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Open-ended learning environments (OELEs) involve high learner agency in defining learning goals and multiple pathways to achieve those goals. These tasks involve learners transitioning through self-regulated learning (SRL) phases by actively setting goals, applying different strategies for those goals, and monitoring performance to update their strategies. However, because of the flexibility, how learners react to impasses and errors has a critical influence on their learning. An intelligent pedagogical agent (IPA) continuously modeling learner activities could help support learners in these environments. However, this continuous comprehension of behaviors and strategies is difficult in OELEs with evolving goals, ill-defined problem structures, and learning sequences. In this paper, we draw from the literature on SRL phases and cognitive states to investigate the utility of two different methods, Sequence Mapping, and Hidden Markov Models, in building learner activity models from log data collected from a summer camp with 14 middle school girls in an open-design environment. We evaluate the effectiveness of these models separately, and combined, in identifying 7 states: Forethought, Engaged Concentration, Acting, Monitoring, Wheel Spinning, Mind Wandering, and Reflect and Repair. Lastly, we recommend dialogue intervention strategies for an IPA to support learning in OELEs.more » « less
-
IntroductionSelf-regulated learning (SRL), or learners’ ability to monitor and change their own cognitive, affective, metacognitive, and motivational processes, encompasses several operations that should be deployed during learning including Searching, Monitoring, Assembling, Rehearsing, and Translating (SMART). Scaffolds are needed within GBLEs to both increase learning outcomes and promote the accurate and efficient use of SRL SMART operations. This study aims to examine how restricted agency (i.e., control over one’s actions) can be used to scaffold learners’ SMART operations as they learn about microbiology with Crystal Island, a game-based learning environment. MethodsUndergraduate students (N = 94) were randomly assigned to one of two conditions: (1) Full Agency, where participants were able to make their own decisions about which actions they could take; and (2) Partial Agency, where participants were required to follow a pre-defined path that dictated the order in which buildings were visited, restricting one’s control. As participants played Crystal Island, participants’ multimodal data (i.e., log files, eye tracking) were collected to identify instances where participants deployed SMART operations. ResultsResults from this study support restricted agency as a successful scaffold of both learning outcomes and SRL SMART operations, where learners who were scaffolded demonstrated more efficient and accurate use of SMART operations. DiscussionThis study provides implications for future scaffolds to better support SRL SMART operations during learning and discussions for future directions for future studies scaffolding SRL during game-based learning.more » « less
-
This study highlights the application of self-regulated learning and cognitive strategy use research in the Connecting Students with Autism to Geographic Information Science & Technology (CSA-GIST) study, an NSF-funded project. This study investigated the program’s impact on autistic high school students’ self-regulated learning (SRL) and cognitive strategy use during STEM instruction. Though the findings were not significant regarding the impact of the program on students SRL and cognitive strategy use at the midpoint of the program, increased interest in math, science, and technology were reported for each cohort during year one. These findings provide implications for adaptations to this workforce development program to increase students’ SRL and cognitive strategy use for GIST and STEM careers among autistic students. Implications for research and practice are discussed.more » « less
An official website of the United States government

