skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron injection into titanium dioxide by panchromatic dirhodium photosensitizers with low energy red light
Two new Rh 2 ( ii , ii ) dyes were synthesized and anchored to TiO 2 for charge injection upon irradiation. The 1 ML-LCT (metal/ligand-to-ligand charge transfer) excited state is populated upon excitation, which decays to the corresponding 3 ML-LCT state. Ultrafast electron injection into TiO 2 from the Rh 2 ( ii , ii ) dyes was achieved with low energy, red light excitation.  more » « less
Award ID(s):
1800395
PAR ID:
10179467
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
70
ISSN:
1359-7345
Page Range / eLocation ID:
10428 to 10431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore ( ADT-COOH ) adsorbed to mesoporous indium tin oxide ( nanoITO ), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO : ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than −0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor. 
    more » « less
  2. [Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating ligands are a useful class of compounds for studies of redox chemistry and catalysis. Here, we show that the bis(2-pyridyl)methane ligand, also known as dipyridylmethane or dpma, can support [Cp*Rh] complexes in the formally + iii and + ii rhodium oxidation states. Specifically, two new rhodium complexes ([Cp*Rh(dpma)(L)] n+ , L = Cl − , CH 3 CN) have been isolated and structurally characterized, and the properties of the complexes have been compared with those of [Cp*Rh] complexes bearing the related dimethyldipyridylmethane (Me 2 dpma) ligand. Complex [Cp*Rh(dpma)(NCCH 3 )] 2+ displays a quasireversible rhodium( iii / ii ) reduction by cyclic voltammetry; related electron paramagnetic resonance (EPR) spectroscopic studies confirm access to the unusual rhodium( ii ) oxidation state. Further reduction to the formally rhodium( i ) oxidation state, however, is followed by deprotonation of dpma, as observed in electrochemical studies and chemical reduction experiments. This reactivity can be understood to occur as a consequence of the presence of doubly benzylic protons in the dpma ligand, since use of the analogous Me 2 dpma enables reduction to rhodium( i ) without involvement of ligand deprotonation. These findings highlight the important role of the ligand backbone substitution pattern in influencing the stability of highly-reduced complexes, a key class of metal species for study of electron and proton management in catalysis. 
    more » « less
  3. Difluoroboron β-diketonate (BF 2 bdk) compounds show environment-sensitive optical properties in solution, aggregation-induced emission (AIE) and multi-stimuli responsive fluorescence switching in the solid state. Here, a series of 4-azepane-substituted β-diketone (bdk) ligands ( L-H , L-OMe , L-Br ) and their corresponding difluoroboron dyes ( D-H , D-OMe , D-Br ) were synthesized, and various responsive fluorescence properties of the compounds were studied, including solvatochromism, viscochromism, AIE, mechanochromic luminescence (ML) and halochromism. Compared to the β-diketones, the boron complexes exhibited higher extinction coefficients but lower quantum yields, and red-shifted absorption and emission in CH 2 Cl 2 . Computational studies showed that intramolecular charge transfer (ICT) dominated rather than π–π* transitions in all the compounds regardless of boron coordination. In solution, all the bdk ligands and boron dyes showed red-shifted emission in more polar solvents and increased fluorescence intensity in more viscous media. Upon aggregation, the emission of the β-diketones was quenched, however, the boronated dyes showed increased emission, indicative of AIE. Solid-state emission properties, ML and halochromism, were investigated on spin cast films. For ML, smearing caused a bathochromic emission shift for L-Br , and powder X-ray diffraction (XRD) patterns showed that the “as spun” and thermally annealed states were more crystalline and the smeared state was amorphous. No obvious ML emission shift was observed for L-H or L-OMe , and the boronated dyes were not mechano-active. Trifluoroacetic acid (TFA) and triethylamine (TEA) vapors were used to study halochromism. Large hypsochromic emission shifts were observed for all the compounds after exposure to TFA vapor, and reversible fluorescence switching was achieved using the acid/base pair. 
    more » « less
  4. Charged excited states can accumulate on the surface of colloidal quantum dots (QDs), affecting their optoelectronic properties. In experimental samples, QDs often have non-stoichiometric structures, giving rise to cation-rich and anion-rich nanostructures. We explore the effect of charge on the ground- and excited-state properties of CdSe non-stoichiometric QDs (NS-QDs) of ∼1.5 nm in size using density functional theory calculations. We compare two cases: (i) NS- QDs with a charge introduced by direct hole or electron injection and (ii) neutral NS-QDs with one removed surface ligand (with a dangling bond). Our calculations reveal that a neutral dangling bond has an effect on the electronic structure similar to that of the electron injection for the Cd-rich NS-QDs or hole injection for the Se-rich NS-QDs. In Cd-rich structures, either the injection of an electron or the removal of a passivating ligand results in the surface-localized half-filled trap state inside the energy gap. For Se-rich structures, either the injection of a hole or the removal of a ligand introduces surface-localized unoccupied trap states inside the energy gap. As a result, the charge localization formed by these two approaches leads to an appearance of low-energy electronic transitions strongly red-shifted from the main excitonic band of NS-QDs. These transitions related to a negative charge or a dangling bond exhibit weak optical activity in Cd-rich NS-QDs. Transitions related to a positive charge or a dangling bond are optically forbidden in Se-rich NS-QDs. In contrast, electron injection in Se-rich NS-QDs strongly increases the optical activity of the lowest- red-shifted charge-originated states. 
    more » « less
  5. Abstract The nanomaterial containing amphiphile‐stabilized mononuclear Cu(II) is developed. The material is characterized by various spectroscopic techniques, such as X‐ray absorption spectrscopy (XAS), high‐resolution transmission electron microscopy, nuclear magnetic resonance (NMR), UV‐vis, and infrared spectroscopies. Since the structural data for the amphiphile‐bound Cu(II) center is not available, a theoretical model based on DFT calculations is employed. The analyses based on NMR spectroscopic data, including the isotope labeling, support that the tertiary amide group of the amphiphile binds to the Cu surface. Likewise, the bond distances found by XAS spectroscopy agree with the theoretical model. Time‐dependent DFT studies predict that the low‐lying excited state has a dominant ligand‐to‐metal charge transfer (LMCT) character. Cu(II) changes to Cu(I) assisted by the LMCT excitation upon visible light irradiation, generating robust catalytically active species. The catalytic activity for domino azidation‐[3+2] cycloaddition reactions in water is investigated. The catalytic protocol is applicable on various substrates, and the catalytic material is stable under ambient conditions for up to three months. 
    more » « less