To train future engineers and to equip them with necessary tools and skills for real-world problem solving, it is important to provide exposure to real-world problem solving by incorporating a software lab module while teaching engineering courses such as Computational Fluid Dynamics (CFD) and/or related Fluids courses. High cost of commercial software packages and limited number of licenses available for course instruction creates several challenges in incorporating commercial software packages in the instructional workflow. To circumvent such limitations, open-source software packages could be a good alternative as open-source software packages can be downloaded and used free of cost and thus provides a wider accessibility to students and practitioners. With the same motivation, in this contribution, an outline for implementing a two-week course module by incorporating open-source software in the instructional workflow is proposed and demonstrated by considering an example of wind flow around a building. The course module outlined in this work can also be extended to formulate a full-fledged CFD course for instructional purposes. Besides the information provided in this paper, authors have also shared an extended report based on current work and the relevant case files via Github repository (https://github.com/rpsuark/ASEE21-OpenFOAM-Introduction) for a hands on learning experience. With the help of information contained in this paper along with the extended report and uploaded case files, readers can install the open-source software packages - ‘OpenFOAM’ and ‘ParaView’, make their own simple case files, run simulations, and visualize the simulated results. 
                        more » 
                        « less   
                    
                            
                            Suite-CFD: An Array of Fluid Solvers Written in MATLAB and Python
                        
                    
    
            Computational Fluid Dynamics (CFD) models are being rapidly integrated into applications across all sciences and engineering. CFD harnesses the power of computers to solve the equations of fluid dynamics, which otherwise cannot be solved analytically except for very particular cases. Numerical solutions can be interpreted through traditional quantitative techniques as well as visually through qualitative snapshots of the flow data. As pictures are worth a thousand words, in many cases such visualizations are invaluable for understanding the fluid system. Unfortunately, vast mathematical knowledge is required to develop one’s own CFD software and commercial software options are expensive and thereby may be inaccessible to many potential practitioners. To that extent, CFD materials specifically designed for undergraduate education are limited. Here we provide an open-source repository, which contains numerous popular fluid solvers in 2 D (projection, spectral, and Lattice Boltzmann), with full implementations in both MATLAB and Python3. All output data is saved in the . v t k format, which can be visualized (and analyzed) with open-source visualization tools, such as VisIt or ParaView. Beyond the code, we also provide teaching resources, such as tutorials, flow snapshots, measurements, videos, and slides to streamline use of the software. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1828163
- PAR ID:
- 10179578
- Date Published:
- Journal Name:
- Fluids
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2311-5521
- Page Range / eLocation ID:
- 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In our earlier work (https://github.com/rpsuark/ASEE21-OpenFOAM-Introduction), it was reasoned that open-source software OpenFOAM would be a cost-effective and more accessible alternative for teaching Computational Fluid Dynamics (CFD) than commercial software. Commercial software like Ansys Fluent costs more than $10k per year for one user. The above-mentioned work models wind flow around a building for smooth flow, whereas extreme winds, which tend to be irregular, can cause various structural failures of buildings. These kinds of irregular wind flows are called turbulent flows. Thus, in this contribution, an additional three-week class module is provided for the ‘CFD for Wind Engineering’ class which includes hands-on material on modeling turbulent wind flow around a building using open-source software OpenFOAM and ParaView. To model the turbulence, Large Eddy Simulation (LES) is considered with a logarithmic inlet profile. To connect the log profile in a coarse grid, the law of the wall condition is also introduced in the OpenFOAM environment. To illustrate the application, the wind flow around a cubic building is considered. The current study’s case files and the extended report are provided at https://github.com/rpsuark/ASEE21-OpenFOAM-LES.more » « less
- 
            High-Fidelity Simulation of Flows in Bone-Like Environment to Investigate the Growth of Cancer CellsAbstract Metastatic cancer in bones is incurable, which causes significant mobility and mortality to the patients. In this work, we investigate the role of interstitial fluid flow on cancer cells' growth within the interconnected pores of human bone. In-vitro experiments were carried out in a bio-reactor which includes bone-like scaffold specimens. A pump is used to maintain a laminar flow condition inside the bioreactor to resemble fluid flow in bones. The scaffold specimens are harvested after 23 days in the bioreactor. The scaffold specimen is scanned with Micro-CT under the resolution of 70 micrometers. We created a full-scale 3D computational model of the scaffold based on the micro-CT data using the open-source software Seg3D and Meshmixer. Based on the geometrical models, we generated the computational grids using the commercial software Gridgen. We performed Computational Fluid Dynamics (CFD) simulations with the immersed boundary method (Gilmanov, Le, Sotiropoulos, JCP 300, 1, 2015) to investigate the flow patterns inside the pores of the scaffolds. The results reveal a non-uniform flow distribution in the vicinity of the scaffold. The flow velocity and the shear stress distributions inside the scaffold are shown to be convoluted and very sensitive to the pore sizes. Our future work will further quantify these distributions and correlate them to cancer cells' growth observed in the experiments.more » « less
- 
            Abstract. In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.more » « less
- 
            Our study aims to identify the role of fluid flow in the growth of human bone cancer cells during metastasis. In our experiments, the cancer cells are seeded on the surface of cylindrical scaffolds in a bioreactor. The flow is laminar flow, which mimics the physiological conditions of the human body. A full-scale 3D high-resolution computational mesh of scaffold was created based on the physical scaffold's Micro-CT scans using open-source imaging software Slicer3D and Meshmixer. To investigate the influences of the flow on the seeded cells, we performed Computational Fluid Dynamics (CFD) simulations with the immersed boundary method (Gilmanov, Le, Sotiropoulos, JCP 300, 1, 2015). The computational domain was generated using the commercial software Gridgen. Our results show that the fluid flow velocity is highly dependent on the shape and pore sizes. In addition, the magnitude of the velocity on the surface where the cells are seeded is in between [0-0.05] μm/sallowing the cells to grow without being detached from the surface of the scaffold. Our future work will focus on (i) investigating the role of the shear stress on the distribution and orientation of the cancer cells. (ii) Simulating multiple scaffolds within the bioreactor to further quantify the impact of the gap on the flow velocity and shear.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    