Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology for energy-efficient electronics (Fig. 1). Despite this promise, CNTs are subject to substantial inherent imperfections; every ensemble of CNTs includes some percentage of metallic CNTs (m-CNTs). m-CNTs result in conductive shorts between CNFET source and drain, resulting in excessive leakage and degraded (potentially incorrect) circuit functionality (Fig. 1). Several techniques have been developed to remove the majority of m-CNTs (no technique today removes 100% of m-CNTs). While these techniques enabled the first digital CNFET circuits, it is still not possible to realize large-scale CNFET analog or mixed-signal CNFET circuits due to m-CNTs. As shown in Fig. 1, while a digital logic gate can still function correctly in the presence of a small fraction of m-CNTs (but with degraded resilience to noise) [1], a single m-CNT in an analog circuit can result in catastrophic failure (e.g., degrading amplifier gain resulting in functional failure of circuit blocks such as ADCs and DACs)1. This paper presents a circuit design technique, Self-Healing Analog with RRAM and CNFETs (SHARC), that leverages the programmability of non-volatile resistive RAM (RRAM) to automatically “self-heal” analog circuits in the presence of m-CNTs. Using SHARC, we experimentally demonstrate analog CNFET circuits robust to m-CNTs as well as the first mixed-signals CNFET subsystem (4-bit DAC and SAR ADC; these are the largest reported complementary (CMOS) CNFET circuit demonstrations to-date).
more »
« less
Chemically tailored carbon nanotubes as a new toolbox for biomedicine and beyond
Like molecules of DNA, carbon nanotubes (CNTs) can display a variety of structures, but all conduct electrons and feature unique optical properties. In this perspective article, we highlight several recent works that bridge these two seemingly distant worlds. We illustrate the largely untapped potential of CNTs for biological research by exploring several developing biomedical applications utilizing nanotube semiconductors, including field effect transistor biosensors that couple high sensitivity with selectivity, and fluorophores for deep-tissue imaging whose excitation and emission wavelengths can be tuned throughout the near-IR II window simply by using defect chemistry.
more »
« less
- Award ID(s):
- 1904488
- PAR ID:
- 10179625
- Date Published:
- Journal Name:
- The Biochemist
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0954-982X
- Page Range / eLocation ID:
- 10 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
If agricultural plants are exposed to carbon nanotubes (CNTs), they can potentially take up the CNTs from growth media and translocate them to their different tissues. In addition, agricultural application of CNTs recently attracted increasing attention, as they could promote germination, enhance crop yield, and exhibit other benefits. For evaluating the environmental effects of CNTs and optimizing their agricultural application, it is essential to quantify CNTs in plant tissues. In this study, pristine (p-) and carboxyl-functionalized (c-) multiwall CNTs (MWCNTs) were extracted from plant tissues by a sequential digestion with nitric acid (HNO 3 ) and sulfuric acid (H 2 SO 4 ). The extracted MWCNTs were stabilized with nonionic surfactant Triton X-100 and analyzed with ultraviolet-visible (UV-vis) spectroscopic analysis to measure the concentration of the MWCNTs in plant (lettuce) tissues. The MWCNT concentration was linearly correlated with the absorbance at 800 nm. The detection limit for p- and c-MWCNTs was achieved at 0.10–0.12, 0.070–0.081, 0.019–0.18 μg mg −1 for leaf, stem, and root tissues, respectively. The developed method was applied for lettuce ( Lactuca sativa , cv. black seeded Simpson) hydroponically grown with 5, 10, 20 mg L −1 of p-MWCNTs and c-MWCNTs in the culture solution. We detected 0.21 ± 0.05–4.57 ± 0.39 μg mg −1 p-MWCNTs and 0.20 ± 0.17–0.75 ± 0.25 μg mg −1 c-MWCNTs in the lettuce roots, positively correlated with the dose of CNTs in solution. We have developed a method for rapid quantification of CNTs in plant tissues using a widely-accessible technique, which can enable reliable analysis of CNTs in plant tissues and provide critical information for evaluating the environmental implications and managing agricultural application of CNTs.more » « less
-
null (Ed.)The remarkable mechanical properties and piezo-responses of carbon nanotubes (CNT) makes this group of nanomaterials an ideal candidate for use in smart cementitious materials to monitor forces and the corresponding structural health conditions of civil structures. However, the inconsistency in measurements is the major challenge of CNT-enabled smart cementitious materials to be widely applied for force detection. In this study, the modified tapioca starch co-polymer is introduced to surface treat the CNTs for a better dispersion of CNTs; thus, to reduce the inconsistency of force measurements of the CNTs modified smart cementitious materials. Cement mortar with bare (unmodified) CNTs (direct mixing method) and surfactant surface treated CNTs using sodium dodecyl benzenesulfonate (NaDDBS) were used as the control. The experimental results showed that when compared with samples made from bare CNTs, the samples made by modified tapioca starch co-polymer coated CNTs (CCNTs) showed higher dynamic load induced piezo-responses with significantly improved consistency and less hysteresis in the cementitious materials. When compared with the samples prepared with the surfactant method, the samples made by the developed CCNTs showed slightly increased force detection sensitivity with significantly improved consistency in piezo-response and only minor hysteresis, indicating enhanced dispersion effectiveness. The new CNT surface coating method can be scaled up easily to cater the potential industry needs for future wide application of smart cementitious materials.more » « less
-
null (Ed.)Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.more » « less
-
Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT.more » « less
An official website of the United States government

