This paper considers system identification for systems whose output is asymptotically periodic under constant inputs. The model used for system identification is a discretetime Lur’e model consisting of asymptotically stable linear dynamics, a time delay, a washout filter, and a static nonlinear feedback mapping. For sufficiently large scaling of the loop transfer function, these components cause divergence under small signal levels and decay under large signal amplitudes, thus producing an asymptotically oscillatory output. A leastsquares technique is used to estimate the coefficients of the linear model as well as the parameters of a piecewise-linear approximation of the feedback mapping.
A Time-Delayed Lur’e Model with Biased Self-Excited Oscillations
Self-excited systems arise in many applications,
such as biochemical systems, mechanical systems with fluidstructure
interaction, and fuel-driven systems with combustion
dynamics. This paper presents a Lur’e model that exhibits
biased oscillations under constant inputs. The model involves
arbitrary asymptotically stable linear dynamics, time delay, a
washout filter, and a saturation nonlinearity. For all sufficiently
large scalings of the loop transfer function, these components
cause divergence under small signal levels and decay under
large signal amplitudes, thus producing an oscillatory response.
A bias-generation mechanism is used to specify the mean of
the oscillation. The main contribution of the paper is the
presentation and analysis of a discrete-time version of this
model.
- Award ID(s):
- 1634709
- Publication Date:
- NSF-PAR ID:
- 10179654
- Journal Name:
- Proc. American Control Conference
- Volume:
- 1
- Issue:
- 1
- Page Range or eLocation-ID:
- 2699 to 2704
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-drivingmore »
-
Conventional perturbation-based extremum seeking control (ESC) employs a slow time-dependent periodic signal to find an optimum of an unknown plant. To ensure stability of the overall system, the ESC parameters are selected such that there is sufficient time-scale separation between the plant and the ESC dynamics. This approach is suitable when the plant operates at a fixed time-scale. In case the plant slows down during operation, the time-scale separation can be violated. As a result, the stability and performance of the overall system can no longer be guaranteed. In this paper, we propose an ESC for periodic systems, where the external time-dependent dither signal in conventional ESC is replaced with the periodic signals present in the plant, thereby making ESC time-invariant in nature. The advantage of using a state-based dither is that it inherently contains the information about the rate of the rhythmic task under control. Thus, in addition to maintaining time-scale separation at different plant speeds, the adaptation speed of a time-invariant ESC automatically changes, without changing the ESC parameters. We illustrate the effectiveness of the proposed time-invariant ESC with a Van der Pol oscillator example and present a stability analysis using averaging and singular perturbation theory.
-
Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whethermore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »