skip to main content


Title: Harmonious Coexistence of Structured Weight Pruning and Ternarization for Deep Neural Networks
Deep convolutional neural network (DNN) has demonstrated phenomenal success and been widely used in many computer vision tasks. However, its enormous model size and high computing complexity prohibits its wide deployment into resource limited embedded system, such as FPGA and mGPU. As the two most widely adopted model compression techniques, weight pruning and quantization compress DNN model through introducing weight sparsity (i.e., forcing partial weights as zeros) and quantizing weights into limited bit-width values, respectively. Although there are works attempting to combine the weight pruning and quantization, we still observe disharmony between weight pruning and quantization, especially when more aggressive compression schemes (e.g., Structured pruning and low bit-width quantization) are used. In this work, taking FPGA as the test computing platform and Processing Elements (PE) as the basic parallel computing unit, we first propose a PE-wise structured pruning scheme, which introduces weight sparsification with considering of the architecture of PE. In addition, we integrate it with an optimized weight ternarization approach which quantizes weights into ternary values ({-1,0,+1}), thus converting the dominant convolution operations in DNN from multiplication-and-accumulation (MAC) to addition-only, as well as compressing the original model (from 32-bit floating point to 2-bit ternary representation) by at least 16 times. Then, we investigate and solve the coexistence issue between PE-wise Structured pruning and ternarization, through proposing a Weight Penalty Clipping (WPC) technique with self-adapting threshold. Our experiment shows that the fusion of our proposed techniques can achieve the best state-of-the-art ∼21× PE-wise structured compression rate with merely 1.74%/0.94% (top-1/top-5) accuracy degradation of ResNet-18 on ImageNet dataset.  more » « less
Award ID(s):
2005209 1740126 1908495 2003749 1931871
NSF-PAR ID:
10179711
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
04
ISSN:
2159-5399
Page Range / eLocation ID:
6623 to 6630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The memristor crossbar array has emerged as an intrinsically suitable matrix computation and low-power acceleration framework for DNN applications. Many techniques such as memristor-based weight pruning and memristor-based quantization have been studied. However, the high accuracy solution for the above techniques is still waiting for unraveling. In this paper, we propose a memristor-based DNN framework which combines both structured weight pruning and quantization by incorporating ADMM algorithm for better pruning and quantization performance. We also discover the non-optimality of the ADMM solution in weight pruning and the unused data path in a structured pruned model. We design a software-hardware co-optimization framework which contains the first proposed Network Purification and Unused Path Removal algorithms targeting on post-processing a structured pruned model after ADMM steps. By taking memristor hardware constraints into our whole framework, we achieve extreme high compression rate with minimum accuracy loss. For quantizing structured pruned model, our framework achieves nearly no accuracy loss after quantizing weights to 8-bit memristor weight representation. We share our models at anonymous link https://bit.ly/2VnMUy0. 
    more » « less
  2. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at https://github.com/yeshaokai/admm-nn. 
    more » « less
  3. null (Ed.)
    With the widely deployment of powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN in a hardware-aware manner to reduce the computing complexity, while maintaining accuracy, such as weight quantization, pruning, convolution decomposition, etc. However, in typical DNN compression methods, a smaller, but fixed, network structure is generated from a relative large background model for resource limited hardware accelerator deployment. However, such optimization lacks the ability to tune its structure on-the-fly to best fit for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review two of our prior works [1], [2] to address this issue, discussing how to construct a dynamic DNN structure through either uniform or non-uniform channel selection based sub-network sampling. The constructed dynamic DNN could tune its computing path to involve different number of channels, thus providing the ability to trade-off between speed, power and accuracy on-the-fly after model deployment. Correspondingly, an emerging Spin-Orbit Torque Magnetic Random-Access-Memory (SOT-MRAM) based Processing-In-Memory (PIM) accelerator will also be discussed for such dynamic neural network structure. 
    more » « less
  4. Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning, which affects performance and throughput; 2) the increased training complexity; and 3) the lack of rigirous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(n log n) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: the DNNs based on CirCNN can converge to the same "effectiveness" as DNNs without compression. We propose the CirCNN architecture, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc.). In CirCNN architecture: 1) Due to the recursive property, FFT can be used as the key computing kernel, which ensures universal and small-footprint implementations. 2) The compressed but regular network structure avoids the pitfalls of the network pruning and facilitates high performance and throughput with highly pipelined and parallel design. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6 - 102X energy efficiency improvements compared with the best state-of-the-art results. 
    more » « less
  5. Deep convolution neural network has achieved great success in many artificial intelligence applications. However, its enormous model size and massive computation cost have become the main obstacle for deployment of such powerful algorithm in the low power and resource limited embedded systems. As the countermeasure to this problem, in this work, we propose statistical weight scaling and residual expansion methods to reduce the bit-width of the whole network weight parameters to ternary values (i.e. -1, 0, +1), with the objectives to greatly reduce model size, computation cost and accuracy degradation caused by the model compression. With about 16X model compression rate, our ternarized ResNet-32/44/56 could outperforms full-precision counterparts by 0.12%, 0.24% and 0.18% on CIFAR-10 dataset. We also test our ternarization method with AlexNet and ResNet-18 on ImageNet dataset, which both achieve the best top-1 accuracy compared to recent similar works, with the same 16X compression rate. If further incorporating our residual expansion method, compared to the full-precision counterpart, our ternarized ResNet-18 even improves the top-5 accuracy by 0.61% and merely degrades the top-1 accuracy only by 0.42% for ImageNet dataset, with 8X model compression rate. It outperforms the recent ABC-Net by 1.03% in top-1 accuracy and 1.78% in top-5 accuracy, with around 1.25X higher compression rate and more than 6X computation reduction due to the weight sparsity. 
    more » « less