skip to main content

Title: Sparse BD-Net: A Multiplication-less DNN with Sparse Binarized Depth-wise Separable Convolution
Award ID(s):
1740126 2005209 1908495 2003749 1931871
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Journal on Emerging Technologies in Computing Systems
Page Range / eLocation ID:
1 to 24
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sparse principal component analysis and sparse canonical correlation analysis are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Because nonsmoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve some relaxations of them or are heuristic and lack convergence guarantees. In this paper, we propose a new alternating manifold proximal gradient method to solve these two high-dimensional problems and provide a unified convergence analysis. Numerical experimental results are reported to demonstrate the advantages of our algorithm. 
    more » « less
  2. SPEX Left LU is a software package for exactly solving unsymmetric sparse linear systems. As a component of the sparse exact (SPEX) software package, SPEX Left LU can be applied to any input matrix, A , whose entries are integral, rational, or decimal, and provides a solution to the system \( Ax = b \) , which is either exact or accurate to user-specified precision. SPEX Left LU preorders the matrix A with a user-specified fill-reducing ordering and computes a left-looking LU factorization with the special property that each operation used to compute the L and U matrices is integral. Notable additional applications of this package include benchmarking the stability and accuracy of state-of-the-art linear solvers and determining whether singular-to-double-precision matrices are indeed singular. Computationally, this article evaluates the impact of several novel pivoting schemes in exact arithmetic, benchmarks the exact iterative solvers within Linbox, and benchmarks the accuracy of MATLAB sparse backslash. Most importantly, it is shown that SPEX Left LU outperforms the exact iterative solvers in run time on easy instances and in stability as the iterative solver fails on a sizeable subset of the tested (both easy and hard) instances. The SPEX Left LU package is written in ANSI C, comes with a MATLAB interface, and is distributed via GitHub, as a component of the SPEX software package, and as a component of SuiteSparse. 
    more » « less