- Award ID(s):
- 1931193
- Publication Date:
- NSF-PAR ID:
- 10179798
- Journal Name:
- Hongwai yu haomibo xuebao
- Volume:
- 39
- Issue:
- 2
- Page Range or eLocation-ID:
- 137-141
- ISSN:
- 1001-9014
- Sponsoring Org:
- National Science Foundation
More Like this
-
FeAs 2−x Se x ( x = 0.30–1.0) samples were synthesized as phase pure powders by conventional solid-state techniques and as single crystals ( x = 0.50) from chemical vapor transport. The composition of the crystals was determined to be Fe 1.025(3) As 1.55(3) Se 0.42(3) , crystallizing in the marcasite structure type, Pnnm space group. FeAs 2−x Se x (0 < x < 1) was found to undergo a marcasite-to-arsenopyrite ( P 2 1 / c space group) structural phase transition at x ∼ 0.65. The structures are similar, with the marcasite structure best described as a solid solution of As/Se, whereas the arsenopyrite has ordered anion sites. Magnetic susceptibility and thermoelectric property measurements from 300–2 K were performed on single crystals, FeAs 1.50 Se 0.50 . Paramagnetic behavior is observed from 300 to 17 K and a Seebeck coefficient of −33 μV K −1 , an electrical resistivity of 4.07 mΩ cm, and a very low κ l of 0.22 W m −1 K −1 at 300 K are observed. In order to determine the impact of the structural transition on the high-temperature thermoelectric properties, polycrystalline FeAs 2−x Se x ( x = 0.30, 0.75, 0.85, 1.0) samplesmore »
-
Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca aremore »
-
ABSTRACT We characterize the properties and evolution of bright central galaxies (BCGs) and the surrounding intracluster light (ICL) in galaxy clusters identified in the Dark Energy Survey and Atacama Cosmology Telescope Survey (DES-ACT) overlapping regions, covering the redshift range 0.20 < z < 0.80. Over this redshift range, we measure no change in the ICL’s stellar content (between 50 and 300 kpc) in clusters with log10(M200m,SZ/M⊙) >14.4. We also measure the stellar mass–halo mass (SMHM) relation for the BCG+ICL system and find that the slope, β, which characterizes the dependence of M200m,SZ on the BCG+ICL stellar mass, increases with radius. The outskirts are more strongly correlated with the halo than the core, which supports that the BCG+ICL system follows a two-phase growth, where recent growth (z < 2) occurs beyond the BCG’s core. Additionally, we compare our observed SMHM relation results to the IllustrisTNG300-1 cosmological hydrodynamic simulations and find moderate qualitative agreement in the amount of diffuse light. However, the SMHM relation’s slope is steeper in TNG300-1 and the intrinsic scatter is lower, likely from the absence of projection effects in TNG300-1. Additionally, we find that the ICL exhibits a colour gradient such that the outskirts are bluer than the core.more »
-
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
-
Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in themore »