Supramolecular photochemistry of encapsulated caged ortho -nitrobenzyl triggers
ortho -Nitrobenzyl ( o NB) triggers have been extensively used to release various molecules of interest. However, the toxicity and reactivity of the spent chromophore, o -nitrosobenzaldehyde, remains an unaddressed difficulty. In this study we have applied the well-established supramolecular photochemical concepts to retain the spent trigger o -nitrosobenzaldehyde within the organic capsule after release of water-soluble acids and alcohols. The sequestering power of organic capsules for spent chromophores during photorelease from ortho -nitrobenzyl esters, ethers and alcohols is demonstrated with several examples.
more »
« less
- Award ID(s):
- 1807729
- PAR ID:
- 10179884
- Date Published:
- Journal Name:
- Photochemical & Photobiological Sciences
- Volume:
- 18
- Issue:
- 10
- ISSN:
- 1474-905X
- Page Range / eLocation ID:
- 2411 to 2420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ortho-Nitrosocumene (o-NC) exhibits dynamic N,N bonding, interchanging monomer and E/Z-azodioxide dimer structures, the extent of which depends on the environment. As a solid, o-NC is a Z-dimer; in organic solvent, the monomer is favored; and in water, dimers are favored. A supramolecular assembly of o-NC is observed as a separate species by NMR in water, shown to be a novel nanometer-sized aggregate containing B2000 molecules.more » « less
-
The base-catalyzed addition of 1-cyclopropylethanol to styrene derivatives with an acidic reaction workup enables anti-Markovnikov hydration. The use of either catalytic organic superbase or crown ether-ligated inorganic base permits hydration of a wide variety of styrene derivatives, including electron-deficient, ortho -substituted and heteroaryl variants. This protocol complements alternative routes to terminal alcohols that rely on stoichiometric reduction and oxidation processes. The utility of this method is demonstrated through multigram scale reactions and its use in a two-step hydration/cyclization process of ortho -halogenated styrenes to prepare 2,3-dihydrobenzofuran derivatives.more » « less
-
Chemoselectivity is a significant barrier that synthetic chemists face while synthe sizing organic mols. As a remedy, protective groups (P Gs) are used during chem. reactions to prevent highly reactive functional groups from interf ering with other functional groups within the same mol. However, as the number of comparable PGs within a mol. increases, it becomes more difficult to remove individual P Gs using typical methods such as acidic and basic conditions. PGs have also been used in the synthesis of hydroxamic acids (H As), a class of organic compounds known for their potential use as precursors for anticancer drugs such as Trichostatin A, a powerful tumor cell inhibitor. Despite their widespread use, HAs are challenging to synthesize and purify due to their high reactivity and the formation of numerous polysubstituted byproducts during the synthetic process. In this study, we use ortho- nitrobenzyl (o-NB) photolabile protecting groups (PPGs) derived from thiophene to solve the problem of H A synthesis and purification This is a preferable method because it requires only visible light to deprotect these PPGs. However, most o-NB PPGs absorb in the UV region of the electromagnetic spectrum, making them unsuitable for use in biol. systems. Herein, we designed and synthesized a visible light-absorbing thiophenebased o-NB PPG that absorbs in the visible region of the spectrum while avoiding the challenges associated with H A synthesis and purification To demonstrate the stability of our o-NB PPG, we will selectively deprotect classic PGs using traditional methods without cleaving the HA moiety. With this method, visible light will be used to cleave and generate H A in high yields, with a diagnostic fluore scent byproduct used to quantify the amount of H A formed.more » « less
-
ABSTRACT Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n -alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n -alcohols that served as growth substrates (C 2 to C 12 ) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C 2 to C 12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C 2 and C 3 carboxylic acids. Besides being a requirement for the response to n -alcohols, McfP was required for the response of P. putida F1 to pyruvate, l -lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. β-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves. IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n -alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida , and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein.more » « less
An official website of the United States government

