ABSTRACT Coupling superconductors to quantum Hall edge states is the subject of intense investigation as part of the ongoing search for non-abelian excitations. Our group has previously observed supercurrents of hundreds of picoamperes in graphene Josephson junctions in the quantum Hall regime. One of the explanations of this phenomenon involves the coupling of an electron edge state on one side of the junction to a hole edge state on the opposite side. In our previous samples, these states are separated by several microns. Here, a narrow trench perpendicular to the contacts creates counterpropagating quantum Hall edge channels tens of nanometres from each other. Transport measurements demonstrate a change in the low-field Fraunhofer interference pattern for trench devices and show a supercurrent in both trench and reference junctions in the quantum Hall regime. The trench junctions show no enhancement of quantum Hall supercurrent and an unexpected supercurrent periodicity with applied field, suggesting the need for further optimization of device parameters.
more »
« less
Quantum Hall–based superconducting interference device
We present a study of a graphene-based Josephson junction with dedicated side gates carved from the same sheet of graphene as the junction itself. These side gates are highly efficient and allow us to modulate carrier density along either edge of the junction in a wide range. In particular, in magnetic fields in the 1- to 2-T range, we are able to populate the next Landau level, resulting in Hall plateaus with conductance that differs from the bulk filling factor. When counter-propagating quantum Hall edge states are introduced along either edge, we observe a supercurrent localized along that edge of the junction. Here, we study these supercurrents as a function of magnetic field and carrier density.
more »
« less
- Award ID(s):
- 1743907
- PAR ID:
- 10179917
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 9
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaw8693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the transport properties of mm-scale CVD graphene p-n junctions, which are formed in a single gated graphene field effect transistor configuration. Here, an electrical-stressing-voltage technique served to modify the electrostatic potential in the SiO2/Si substrate and create the p-n junction. We examine the transport characteristics about the Dirac points that are localized in the perturbed and unperturbed regions in the graphene channel and note the quantitative differences in the Hall effect between the perturbed and unperturbed regions. The results also show that the longitudinal resistance is highly sensitive to the external magnetic field when the Hall bar device operates as a p-n junction.more » « less
-
Thermoelectric responses in two-dimensional electron gases subjected to magnetic fields have the potential to provide unique information about quasiparticle statistics. In this study, we show that chiral edge states play a key role in thermoelectric Hall bar measurements by completely controlling the direction of the internal thermal gradient. To this end, we perform measurements of the magnetothermoelectric responses of cadmium arsenide quantum wells. The magnetothermoelectric responses in the quantum Hall regime agree with theoretical predictions if one considers the role of chiral edge states, which flow in opposite directions on either side of the Hall bar and establish an internal temperature gradient that is perpendicular to the externally applied thermal gradient. We show that the results are self-consistent within this picture under different measurement conditions. We discuss potential applications of the findings, such as in nanoscale control of local temperature gradients and thermoelectric effects along with the characterization of other topological systems with chiral edges states.more » « less
-
Abstract One-dimensional chiral interface channels can be created at the boundary of two quantum anomalous Hall (QAH) insulators with different Chern numbers. Such a QAH junction may function as a chiral edge current distributer at zero magnetic field, but its realization remains challenging. Here, by employing an in-situ mechanical mask, we use molecular beam epitaxy to synthesize QAH insulator junctions, in which two QAH insulators with different Chern numbers are connected along a one-dimensional junction. For the junction between Chern numbers of 1 and −1, we observe quantized transport and demonstrate the appearance of the two parallel propagating chiral interface channels along the magnetic domain wall at zero magnetic field. For the junction between Chern numbers of 1 and 2, our quantized transport shows that a single chiral interface channel appears at the interface. Our work lays the foundation for the development of QAH insulator-based electronic and spintronic devices and topological chiral networks.more » « less
-
The thermopower of a clean two-dimensional electron system is directly proportional to the entropy per charge carrier and can probe strongly interacting quantum phases such as fractional quantum Hall liquids. In particular, thermopower is a valuable parameter to probe the quasiparticle statistics that give rise to excess entropy in certain even-denominator fractional quantum Hall states. Here we demonstrate that the magneto-thermopower detection of fractional quantum Hall states is more sensitive than resistivity measurements. We do this in the context of Bernal-stacked bilayer graphene and highlight several even-denominator states at a relatively low magnetic feld. These capabilities of thermopower measurements support the interest in fractional quantum Hall states for fnding quasiparticles with non-Abelian statistics and elevate bilayer graphene as a promising platform for achieving this.more » « less
An official website of the United States government

