skip to main content


Title: Toward Generation of Spatially-Entangled Photon Pairs in a Few-Mode Fiber
We describe a novel scheme for spatial-mode-entangled photon-pair generation in a few-mode fiber. We experimentally verify the underlying inter-modal parametric processes with two-mode classical signal input and demonstrate high mode purity of the generated idler.  more » « less
Award ID(s):
1937860 1842680
NSF-PAR ID:
10180086
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CLEO conference 2020
Page Range / eLocation ID:
JTh2A.27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report some of the most intense Z‐mode and O‐mode observations obtained by the Juno spacecraft while in orbit about Jupiter in a low to mid‐latitude region near the inner edge of the Io torus. We have been able to estimate the density of the plasma in this region based on the lower frequency cutoff of the observed Z‐mode emission. The results are compatible with the electron density measurements of the Jovian Auroral Distributions Experiment (JADE), on board the Juno spacecraft, if we account for unmeasured cold plasma. Direction‐finding measurements indicate that the Z‐ and O‐mode emission have distinct source regions. We have also used the measured phase space density of the JADE and the Jupiter energetic particle detector instruments to calculate estimated local growth rates of the observed O‐mode and Z‐mode emission assuming a loss cone instability and quasilinear analysis. The results suggest the emissions were observed near, but not within, a source region, and the free energy source is consistent with a loss cone. We have thus carried out the quasilinear wave analysis of the assumed remote Z‐ and O‐mode wave growths. It is shown that the remotely generated waves, propagated through an inhomogeneous medium to the satellite location, may account for the observed wave characteristics. The importance of Z‐mode in accelerating electrons in the inner Jovian magnetosphere makes these new wave mode confirmations at Jupiter of particular interest. 
    more » « less
  2. SUMMARY

    Protracted episodes of 0.5–7 Hz pre-eruptive volcanic tremor (PVT) are common at active stratovolcanoes. Reliable links to processes related to magma movement consequently enable a potential to use properties of PVT as diagnostic eruptive precursors. A challenging feature of PVT is that generic spectral and amplitude properties of the signal evolve similarly, independent of widely varying volcano structures and conduit geometries on which most physical models rely. The ‘magma wagging’ model introduced in Jellinek & Bercovici (2011) and extended by Bercovici et al. (2013), Liao et al. and Liao & Bercovici (2018) makes progress because it depends on magma dynamics that are only weakly sensitive to volcano architecture: The flow of gas through a permeable foamy annulus of gas bubbles excites, modulates and maintains a wagging oscillation of a central magma column rising in an erupting conduit. ‘Magma wagging’ and resulting PVT are driven through an energy transfer from a ‘Bernoulli mode’ related to azimuthal variations in annular gas flow speeds. Consistent with observations, spectral and amplitude properties of PVT are predicted to evolve before an eruption as the width of the annulus decreases with increased gas fluxes. To confirm this critical Bernoulli-to-wagging energy transfer we use extensive experiments and restricted numerical simulations on wagging oscillations excited on analogue viscoelastic columns by annular air flows. We also explore sensitivities of the spatial and temporal characters of wagging to asymmetric annular air flows that are intractable in the existing magma wagging model and expected to occur in nature with spatial variations in annulus permeability. From high-resolution time-series of linear and orbital displacements of analogue column tops and time-series of axial deflections and accelerations of the column centre line, we characterize the excitation, evolution, and steady-state oscillations in unprecedented detail over a broad range of conditions. We show that the Bernoulli mode corresponds to the timescale for the buildup of axial elastic bending stresses in response to pressure variations related to air flows over the heights of columns. We identify three distinct wagging modes: (i) rotational (cf. Liao et al. 2018); (ii) mixed-mode and (iii) chaotic. Rotational modes are favoured for symmetric, high intensity forcing and a maximal delivery of mechanical energy to the fundamental magma wagging mode. Mixed-mode oscillations regimes are favoured for a symmetric, intermediate intensity forcing. Chaotic modes, involving the least efficient delivery of energy to the fundamental mode, occur for asymmetric forcing and where the intensity of imposed airflow is low. Numerical simulations also show that where forcing frequencies are comparable to a natural mode of free oscillation, power delivered by peripheral air flows is concentrated at the lowest frequency fundamental mode generally and spread among higher frequency natural modes where air pressure and column elastic forces are comparable. Our combined experimental and numerical results make qualitative predictions for the evolution of the character of volcanic tremor and its expression in seismic or infrasound arrays during natural events that is testable in field-based studies of PVT and syn-eruptive volcanic tremor.

     
    more » « less
  3. This work employs single-mode equations to study convection and double-diffusive convection in a porous medium where the Darcy law provides large-scale damping. We first consider thermal convection with salinity as a passive scalar. The single-mode solutions resembling steady convection rolls reproduce the qualitative behavior of root-mean-square and mean temperature profiles of time-dependent states at high Rayleigh numbers from direct numerical simulations (DNS). We also show that the single-mode solutions are consistent with the heat-exchanger model that describes well the mean temperature gradient in the interior. The Nusselt number predicted from the single-mode solutions exhibits a scaling law with Rayleigh number close to that followed by exact 2D steady convection rolls, although large aspect ratio DNS results indicate a faster increase. However, the single-mode solutions at a high wavenumber predict Nusselt numbers close to the DNS results in narrow domains. We also employ the single-mode equations to analyze the influence of active salinity, introducing a salinity contribution to the buoyancy, but with a smaller diffusivity than the temperature. The single-mode solutions are able to capture the stabilizing effect of an imposed salinity gradient and describe the standing and traveling wave behaviors observed in DNS. The Sherwood numbers obtained from single-mode solutions show a scaling law with the Lewis number that is close to the DNS computations with passive or active salinity. This work demonstrates that single-mode solutions can be successfully applied to this system whenever periodic or no-flux boundary conditions apply in the horizontal. 
    more » « less
  4. null (Ed.)
    The ability of a P2P network to scale its throughput up in proportion to the arrival rate of peers has recently been shown to be crucially dependent on the chunk sharing policy employed. Some policies can result in low frequencies of a particular chunk, known as the missing chunk syndrome, which can dramatically reduce throughput and lead to instability of the system. For instance, commonly used policies that nominally ``boost'' the sharing of infrequent chunks such as the well-known rarest-first algorithm have been shown to be unstable. We take a complementary viewpoint, and instead consider a policy that simply prevents the sharing of the most frequent chunk(s), that we call mode-suppression. We also consider a more general version that suppresses the mode only if the mode frequency is larger than the lowest frequency by a fixed threshold. We prove the stability of mode-suppression using Lyapunov techniques, and use a Kingman bound argument to show that the total download time does not increase with peer arrival rate. We then design versions of mode-suppression that sample a small number of peers at each time, and construct noisy mode estimates by aggregating these samples over time. We show numerically that mode suppression stabilizes and outperforms all other recently proposed chunk sharing algorithms, and via integration into BitTorrent implementation operating over the ns-3 that it ensures stable, low sojourn time operation in a real-world setting. 
    more » « less
  5. Mode switching allows applications to support a wide range of operations (e.g. selection, manipulation, and navigation) using a limited input space. While the performance of different mode switching techniques has been extensively examined for pen- and touch-based interfaces, investigating mode switching in augmented reality (AR) is still relatively new. Prior work found that using non-preferred hand is an efficient mode switching technique in AR. However, it is unclear how the technique performs when increasing the number of modes, which is more indicative of real-world applications. Therefore, we examined the scalability of non-preferred hand mode switching in AR with two, four, six, and eight modes. We found that as the number of modes increase, performance plateaus after the four-mode condition. We also found that counting gestures have varying effects on mode switching performance in AR. Our findings suggest that modeling mode switching performance in AR is more complex than simply counting the number of available modes. Our work lays a foundation for understanding the costs associated with scaling interaction techniques in AR. 
    more » « less