skip to main content


Title: Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models
We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range.  more » « less
Award ID(s):
1918531
NSF-PAR ID:
10180137
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computer Aided Verification - 32nd International Conference, {CAV} 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part {I}
Volume:
12224
Page Range / eLocation ID:
629-652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a method for contraction-based feedback motion planning of locally incrementally exponentially stabilizable systems with unknown dynamics that provides probabilistic safety and reachability guarantees. Given a dynamics dataset, our method learns a deep control-affine approximation of the dynamics. To find a trusted domain where this model can be used for planning, we obtain an estimate of the Lipschitz constant of the model error, which is valid with a given probability, in a region around the training data, providing a local, spatially-varying model error bound. We derive a trajectory tracking error bound for a contraction based controller that is subjected to this model error, and then learn a controller that optimizes this tracking bound. With a given probability, we verify the correctness of the controller and tracking error bound in the trusted domain. We then use the trajectory error bound together with the trusted domain to guide a sampling-based planner to return trajectories that can be robustly tracked in execution. We show results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation task, showing our method plans safely with learned models of highdimensional underactuated systems, while baselines that plan without considering the tracking error bound or the trusted domain can fail to stabilize the system and become unsafe. 
    more » « less
  2. Unmanned aerial vehicle (UAV) technology is a rapidly growing field with tremendous opportunities for research and applications. To achieve true autonomy for UAVs in the absence of remote control, external navigation aids like global navigation satellite systems and radar systems, a minimum energy trajectory planning that considers obstacle avoidance and stability control will be the key. Although this can be formulated as a constrained optimization problem, due to the complicated non-linear relationships between UAV trajectory and thrust control, it is almost impossible to be solved analytically. While deep reinforcement learning is known for its ability to provide model free optimization for complex system through learning, its state space, actions and reward functions must be designed carefully. This paper presents our vision of different layers of autonomy in a UAV system, and our effort in generating and tracking the trajectory both using deep reinforcement learning (DRL). The experimental results show that compared to conventional approaches, the learned trajectory will need 20% less control thrust and 18% less time to reach the target. Furthermore, using the control policy learning by DRL, the UAV will achieve 58.14% less position error and 21.77% less system power. 
    more » « less
  3. Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one based on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study. 
    more » « less
  4. This paper is focused on the output tracking control problem of a wave equation with both matched and unmatched boundary uncertainties. An adaptive boundary feedback control scheme is proposed by utilizing radial basis function neural networks (RBF NNs) to deal with the effect of system uncertainties. Specifically, two RBF NN models are first developed to approximate the matched and unmatched system uncertain dynamics respectively. Based on this, an adaptive NN control scheme is derived, which consists of: (i) an adaptive boundary feedback controller embedded by the NN model approximating the matched uncertainty, for rendering stable and accurate tracking control; and (ii) a reference model embedded by the NN model approximating the unmatched uncertainty, for generating a prescribed reference trajectory. Rigorous analysis is performed using the Lyapunov theory and the C0-semigroup theory to prove that our proposed control scheme can guarantee closed-loop stability and wellposedness. Simulation study has been conducted to demonstrate effectiveness of the proposed approach. 
    more » « less
  5. Power tracking is an emerging application for wind farm control designs that allows farms to participate in a wider range of grid services, such as secondary frequency regulation. Control designs that enable large wind farms to follow a time-varying power trajectory are complicated by aerodynamic interactions that make it impossible to decouple upstream wind turbine control actions from downstream power production. This coupling is particularly important in applications where the reference trajectory is changing faster than, or at a similar rate as, the propagation of turbine wakes through the farm. In this work we overcome these difficulties by using a dynamic wake model that accounts for wake expansion, advection, and multi-wake interactions within a model-based receding horizon controller for coordinated control of a large multi-turbine wind farm. An ensemble Kalman filter is employed for state estimation and error correction at the turbine level. We implement the controller in high-fidelity numerical simulations of a wind farm with 84 turbines and then test the controlled farm's ability to track a power reference signal. The results demonstrate the ability of the control algorithm to track two types of power reference signals used by a US independent system operator. 
    more » « less