We present a method for contraction-based feedback motion planning of locally incrementally exponentially stabilizable systems with unknown dynamics that provides probabilistic safety and reachability guarantees. Given a dynamics dataset, our method learns a deep control-affine approximation of the dynamics. To find a trusted domain where this model can be used for planning, we obtain an estimate of the Lipschitz constant of the model error, which is valid with a given probability, in a region around the training data, providing a local, spatially-varying model error bound. We derive a trajectory tracking error bound for a contraction based controller that is subjected to this model error, and then learn a controller that optimizes this tracking bound. With a given probability, we verify the correctness of the controller and tracking error bound in the trusted domain. We then use the trajectory error bound together with the trusted domain to guide a sampling-based planner to return trajectories that can be robustly tracked in execution. We show results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation task, showing our method plans safely with learned models of highdimensional underactuated systems, while baselines that plan without considering the tracking error bound or the trusted domain can fail to stabilize the system and become unsafe.
more »
« less
Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models
We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range.
more »
« less
- Award ID(s):
- 1918531
- PAR ID:
- 10180137
- Date Published:
- Journal Name:
- Computer Aided Verification - 32nd International Conference, {CAV} 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part {I}
- Volume:
- 12224
- Page Range / eLocation ID:
- 629-652
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale soft robots have the capability and potential to perform highly dynamic tasks such as hammering a nail into a board, throwing items long distances, or manipulating objects in cluttered environments. This is due to their joints being underdamped and their ability to store potential energy. The soft robots presented in this article are pneumatically actuated and thus have the ability to perform these tasks without the need for large motors or gear trains. However, getting soft robots to perform highly dynamic tasks requires controllers that can track highly dynamic trajectories to complete those tasks. For soft robots, this is a difficult problem to solve due to the uncertainty in their shape and their complicated dynamics and kinematics. This article presents a formulation of a model reference adaptive controller (MRAC) that causes a three-link soft robot arm to behave like a highly dynamic 2nd-order critically damped system. Using the dynamics of a 2nd-order system, we also present a method to generate joint trajectories for throwing a ball to a desired point in Cartesian space. We demonstrate the viability of our joint-level controller in simulation and on hardware with a reported maximum root mean square error of 0.0872 radians between a reference and executed trajectory. We also demonstrate that our combined MRAC controller and trajectory generator can, on average, throw a ball to within 25–28% of a desired landing location for a throwing distance of between 1.5 and 2 m on real hardware.more » « less
-
Abstract Using the context of trajectory estimation and tracking for multirotor unmanned aerial vehicles (UAVs), we explore the challenges in applying high-gain observers to highly dynamic systems. The multirotor will operate in the presence of external disturbances and modeling errors. At the same time, the reference trajectory is unknown and generated from a reference system with unknown or partially known dynamics. We assume the only measurements that are available are the position and orientation of the multirotor and the position of the reference system. We adopt an extended high-gain observer (EHGO) estimation framework to estimate the unmeasured multirotor states, modeling errors, external disturbances, and the reference trajectory. We design a robust output feedback controller for trajectory tracking that comprises a feedback linearizing controller and the EHGO. The proposed control method is rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results through numerical simulation and experimental validation in which a multirotor tracks a moving ground vehicle with an unknown trajectory and dynamics and successfully lands on the vehicle while in motion.more » « less
-
This work proposes a two-degree of freedom (2DOF) controller for motion tracking of nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high precision. The proposed 2DOF controller consists of an inversion feedforward controller and a real-time feedback controller. The feedforward controller, a sequence-to-sequence LSTM-based inversion model (invLSTMs2s), is used to compensate for the nonlinearity of the PEA, especially at high frequencies, and is collaboratively integrated with a linear MPC feedback controller, which ensures the PEA position tracking performance at low frequencies. Therefore, the proposed 2DOF controller, namely, invLSTMs2s+MPC, is able to achieve high precision over a broad bandwidth. To validate the proposed controller, the uncertainty of invLSTMs2s is checked such that the integration of an inversion model-based feedforward controller has a positive impact on the trajectory tracking performance compared to feedback control only. Experimental validation on a commercial PEA and comparison with existing approaches demonstrate that high tracking accuracies can be achieved by invLSTMs2s+MPC for various reference trajectories. Moreover, invLSTMs2s+MPC is further demonstrated on a multi-dimensional PEA platform for simultaneous multi-direction positioning control.more » « less
-
We model a three-link fully actuated biped as a hybrid system and propose a prediction-based control algorithm for global tracking of reference trajectories. The proposed control strategy consists of a reference system that generates the desired periodic gait, a virtual system that generates a suitable reference trajectory using prediction, and a tracking control law that steers the biped to the virtual trajectory. The proposed algorithms achieves, in finite time, tracking in two steps. We present mathematical properties that define the main elements in the hybrid predictive controller for achieving convergence to the reference within the first two steps. The results are validated through numerical simulations.more » « less
An official website of the United States government

