skip to main content


Title: Recent advances in printable thermoelectric devices: materials, printing techniques, and applications
Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions.  more » « less
Award ID(s):
1905571
PAR ID:
10180294
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
10
Issue:
14
ISSN:
2046-2069
Page Range / eLocation ID:
8421 to 8434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Printing is a versatile method to transform semiconducting nanoparticle inks into functional and flexible devices. In particular, thermoelectric nanoparticles are attractive building blocks to fabricate flexible devices for energy harvesting and cooling applications. However, the performance of printed devices are plagued by poor interfacial connections between nanoparticles and resulting low carrier mobility. While many rigid bulk materials have shown a thermoelectric figure of meritZTgreater than unity, it is an exacting challenge to develop flexible materials withZTnear unity. Here, a scalable screen‐printing method to fabricate high‐performance and flexible thermoelectric devices is reported. A tellurium‐based nanosolder approach is employed to bridge the interfaces between the BiSbTe particles during the postprinting sintering process. The printed BiSbTe flexible films demonstrate an ultrahigh room‐temperature power factor of 3 mW m−1K−2andZTabout 1, significantly higher than the best reported values for flexible films. A fully printed thermoelectric generator produces a high power density of 18.8 mW cm−2achievable with a small temperature gradient of 80 °C. This screen‐printing method, which directly transforms thermoelectric nanoparticles into high‐performance and flexible devices, presents a significant leap to make thermoelectrics a commercially viable technology for a broad range of energy harvesting and cooling applications.

     
    more » « less
  2. Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 10 3 S m −1 and a power factor of 70 μW m −1 K −2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications. 
    more » « less
  3. In recent years, inkjet printing has become a popular form for creating sensors and antennas. These devices are fabricated using different materials with inkjet printing using various (conductive, oxide, biological) inks on predominantly flexible substrate. This form of fabrication has attracted much attention for a variety of reasons such as relatively cheap cost of manufacturing and materials, as well as the ease of use and high customization. These devices also provide a lighter frame and added flexibility allowing them to be incorporated as devices on non-planar surfaces. It is also possible for inkjet printing to be used as a sustainable manufacturing method, providing a method of reducing electronic waste. In this article, several topics related to inkjet printing are covered. These topics include a general overview of the fabrication process of inkjet devices through an inkjet printer, recent applications of inkjet-printed sensors, applications of inkjet-printed antennae, challenges in inkjet printing, and an outlook on the inkjet printing. In the fabrication section, the different materials and printing process are explored. Topics covered in the application section include gas sensors, biomedical sensors, pressure sensors, temperature sensors, glucose sensors, and more. In the inkjet antennas portion of the article, RFID tagging and 5G applications are highlighted. The main challenges covered are specific to fabrication that are being currently addressed.

     
    more » « less
  4. Abstract

    Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.

     
    more » « less
  5. The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices. 
    more » « less