Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.
more »
« less
Infrared Spectroscopy of Gold Carbene Cation (AuCH 2 + ): Covalent or Dative Bonding?
- Award ID(s):
- 1664618
- PAR ID:
- 10180403
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 123
- Issue:
- 41
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- 8932 to 8941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry.more » « less
-
Abstract Nanothermometry is the study of temperature at the submicron scale with a broad range of potential applications, such as cellular studies or electronics. Molecular luminescent‐based nanothermometers offer a non‐contact means to record these temperatures with high spatial resolution and thermal sensitivity. A luminescent‐based molecular thermometer comprised of visible‐emitting Ga3+/Tb3+and Ga3+/Sm3+metallacrowns (MCs) achieved remarkable relative thermal sensitivity associated with very low temperature uncertainty ofSr=1.9 % K−1andδT<0.045 K, respectively, at 328 K, as an aqueous suspension of polystyrene nanobeads loaded with the corresponding MCs. To date, they are the ratiometric molecular nanothermometers offering the highest level of sensitivity in the physiologically relevant temperature range.more » « less