skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Marginal Instability and the Efficiency of Ocean Mixing
The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.  more » « less
Award ID(s):
1830071 1355768 1851520
PAR ID:
10180433
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of physical oceanography
Volume:
50
Issue:
8
ISSN:
0022-3670
Page Range / eLocation ID:
2141-2150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Slowly evolving stratified flow over rough topography is subject to substantial drag due to internal motions, but often numerical simulations are carried out at resolutions where this “wave” drag must be parameterized. Here we highlight the importance of internal drag from topography with scales that cannot radiate internal waves, but may be highly nonlinear, and we propose a simple parameterization of this drag that has a minimum of fit parameters compared to existing schemes. The parameterization smoothly transitions from a quadratic drag law () for lowNh/u0(linear wave dynamics) to a linear drag law () for highNh/u0flows (nonlinear blocking and hydraulic dynamics), whereNis the stratification,his the height of the topography, andu0is the near-bottom velocity; the parameterization does not have a dependence on Coriolis frequency. Simulations carried out in a channel with synthetic bathymetry and steady body forcing indicate that this parameterization accurately predicts drag across a broad range of forcing parameters when the effect of reduced near-bottom mixing is taken into account by reducing the effective height of the topography. The parameterization is also tested in simulations of wind-driven channel flows that generate mesoscale eddy fields, a setup where the downstream transport is sensitive to the bottom drag parameterization and its effect on the eddies. In these simulations, the parameterization replicates the effect of rough bathymetry on the eddies. If extrapolated globally, the subinertial topographic scales can account for 2.7 TW of work done on the low-frequency circulation, an important sink that is redistributed to mixing in the open ocean. 
    more » « less
  2. The Total Operating Characteristic (TOC) measures how the ranks of an index variable distinguish between presence and absence in a binary reference variable. Previous methods to generate the TOC required the reference data to derive from a census or a simple random sample. However, many researchers apply stratified random sampling to collect reference data because stratified random sampling is more efficient than simple random sampling for many applications. Our manuscript derives a new methodology that uses stratified random sampling to generate the TOC. An application to flood mapping illustrates how the TOC compares the abilities of three indices to diagnose water. The TOC shows visually and quantitatively each index’s diagnostic ability relative to baselines. Results show that the Modified Normalized Difference Water Index has the greatest diagnostic ability, while the Normalized Difference Vegetation Index has diagnostic ability greater than the Normalized Difference Water Index at the threshold where the Diagnosed Presence equals the Abundance of water. Some researchers consider only one accuracy metric at only one threshold, whereas the TOC allows visualization of several metrics at all thresholds. The TOC gives more information and clearer interpretation compared to the popular Relative Operating Characteristic. Our software generates the TOC from a census, simple random sample, or stratified random sample. The TOC Curve Generator is free as an executable file at a website that our manuscript gives. 
    more » « less
  3. Abstract The flux Richardson numberRf, also called the mixing efficiency of stratified turbulence, is important in determining geophysical flow phenomena such as ocean circulation and air‐sea transports. MeasuringRfin the field is usually difficult, thus parameterization ofRfbased on readily observed properties is essential. Here, estimates ofRfin a strongly turbulent, sediment‐stratified estuarine flow are obtained from measurements of covariance‐derived turbulent buoyancy fluxes (B) and spectrally fitted values of the dissipation rate of turbulent kinetic energy (ε). We test scalings forRfin terms of the buoyancy Reynolds number (Reb), the gradient Richardson number (Ri), and turbulent Froude number (Frt). Neither theReb‐based nor theRi‐based scheme is able to describe the observed variations inRf, but theFrt‐based parameterization works well. These findings support further use of theFrt‐ based parameterization in turbulent oceanic and estuarine environments. 
    more » « less
  4. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less
  5. Abstract By comparing Cepheid brightnesses with geometric distance measures including Gaia EDR3 parallaxes, most recent analyses conclude metal-rich Cepheids are brighter, quantified asγ∼ −0.2 mag dex−1. While the value ofγhas little impact on the determination of the Hubble constant in contemporary distance ladders (due to the similarity of metallicity across these ladders),γplays a role in gauging the distances to metal-poor dwarf galaxies like the Magellanic Clouds and is of considerable interest in testing stellar models. Recently, B. F. Madore & W. L. Freedman (hereafter MF25) recalibrated Gaia EDR3 parallaxes by adding to them a magnitude offset to match certain historic Cepheid parallaxes, which otherwise differ by ∼1.6σ. A calibration that adjusts Gaia parallaxes by applying a magnitude offset (i.e., a multiplicative correction in parallax) differs significantly from the Gaia Team’s calibration, which is additive in parallax space—especially at distances much closer than 1 kpc or beyond 10 kpc, outside the ∼2–3 kpc range on which the MF25 calibration was based. The MF25 approach reducesγto zero. If broadly applied, it places nearby cluster distances like the Pleiades too close compared to independent measurements, while leaving distant quasars with negative parallaxes. We conclude that the MF25 proposal for Gaia calibration andγ∼ 0 produces farther-reaching consequences, many of which are strongly disfavored by the data. 
    more » « less