skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Total Operating Characteristic from Stratified Random Sampling with an Application to Flood Mapping
The Total Operating Characteristic (TOC) measures how the ranks of an index variable distinguish between presence and absence in a binary reference variable. Previous methods to generate the TOC required the reference data to derive from a census or a simple random sample. However, many researchers apply stratified random sampling to collect reference data because stratified random sampling is more efficient than simple random sampling for many applications. Our manuscript derives a new methodology that uses stratified random sampling to generate the TOC. An application to flood mapping illustrates how the TOC compares the abilities of three indices to diagnose water. The TOC shows visually and quantitatively each index’s diagnostic ability relative to baselines. Results show that the Modified Normalized Difference Water Index has the greatest diagnostic ability, while the Normalized Difference Vegetation Index has diagnostic ability greater than the Normalized Difference Water Index at the threshold where the Diagnosed Presence equals the Abundance of water. Some researchers consider only one accuracy metric at only one threshold, whereas the TOC allows visualization of several metrics at all thresholds. The TOC gives more information and clearer interpretation compared to the popular Relative Operating Characteristic. Our software generates the TOC from a census, simple random sample, or stratified random sample. The TOC Curve Generator is free as an executable file at a website that our manuscript gives.  more » « less
Award ID(s):
1637630
PAR ID:
10358609
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
19
ISSN:
2072-4292
Page Range / eLocation ID:
3922
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This manuscript provides guidance concerning how to use the Total Operating Characteristic (TOC) when (1) analyzing change through time, (2) ranking a categorical independent variable, and (3) constraining the extent for a gaining category. The illustrative variable is the marsh land-cover category in the Plum Island Ecosystems of northeastern Massachusetts, USA. The data are an elevation map and maps showing the land categories of water, marsh, and upland in 1938, 1971, and 2013. There were losses and gains near the edge of the marsh between 1938 and 1972 and between 1972 and 2013. The TOC curves show that marsh gained most intensively at intermediate elevations during the first time interval and then had a weaker association with elevation during the second time interval. Marsh gains more intensively from water than from upland during both time intervals. The TOC curves also demonstrate that the marsh gains occurred where marsh was previously lost, a phenomenon called Alternation. Furthermore, eliminating far distances and extreme elevations from the spatial extent decreased the area under the curve (AUC) for distance and increased the AUC for elevation. We invite scientists to use the TOC because the TOC is easier to interpret and shows more information than the Relative Operative Characteristic. 
    more » « less
  2. Background: The 2020 US Census will use a novel approach to disclosure avoidance to protect respondents’ data, called TopDown. This TopDown algorithm was applied to the 2018 end-to-end (E2E) test of the decennial census. The computer code used for this test as well as accompanying exposition has recently been released publicly by the Census Bureau. Methods: We used the available code and data to better understand the error introduced by the E2E disclosure avoidance system when Census Bureau applied it to 1940 census data and we developed an empirical measure of privacy loss to compare the error and privacy of the new approach to that of a (non-differentially private) simple-random-sampling approach to protecting privacy. Results: We found that the empirical privacy loss of TopDown is substantially smaller than the theoretical guarantee for all privacy loss budgets we examined. When run on the 1940 census data, TopDown with a privacy budget of 1.0 was similar in error and privacy loss to that of a simple random sample of 50% of the US population. When run with a privacy budget of 4.0, it was similar in error and privacy loss of a 90% sample. Conclusions: This work fits into the beginning of a discussion on how to best balance privacy and accuracy in decennial census data collection, and there is a need for continued discussion. 
    more » « less
  3. Precise coastal shoreline mapping is essential for monitoring changes in erosion rates, surface hydrology, and ecosystem structure and function. Monitoring water bodies in the Arctic National Wildlife Refuge (ANWR) is of high importance, especially considering the potential for oil and natural gas exploration in the region. In this work, we propose a modified variant of the Deep Neural Network based U-Net Architecture for the automated mapping of 4 Band Orthorectified NOAA Airborne Imagery using sparsely labeled training data and compare it to the performance of traditional Machine Learning (ML) based approaches—namely, random forest, xgboost—and spectral water indices—Normalized Difference Water Index (NDWI), and Normalized Difference Surface Water Index (NDSWI)—to support shoreline mapping of Arctic coastlines. We conclude that it is possible to modify the U-Net model to accept sparse labels as input and the results are comparable to other ML methods (an Intersection-over-Union (IoU) of 94.86% using U-Net vs. an IoU of 95.05% using the best performing method). 
    more » « less
  4. Wetlands play a significant role in flood mitigation. Remote sensing technologies as an efficient and accurate approach have been widely applied to delineate wetlands. Supervised classification is conventionally applied for remote sensing technologies to improve the wetland delineation accuracy. However, performing supervised classification requires preparing the training data, which is also considered time-consuming and prone to human mistakes. This paper presents a deterministic topographic wetland index to delineate wetland inundation areas without performing supervised classification. The classic methods such as Normalized Difference Vegetation Index, Normalized Difference Water Index, and Topographic Wetness Index were chosen to compare with the proposed deterministic topographic method on wetland delineation accuracy. The ground truth sample points validated by Google satellite imageries from four different years were used for the assessment of the delineation overall accuracy. The results show that the proposed deterministic topographic wetland index has the highest overall accuracy (98.90%) and Kappa coefficient (0.641) among the selected approaches in this study. The findings of this paper will provide an alternative approach for delineating wetlands rapidly by using solely the LiDAR-derived Digital Elevation Model. 
    more » « less
  5. Abstract Bidirectional reflectance distribution function (BRDF) effects are a persistent issue for the analysis of vegetation in airborne imaging spectroscopy data, especially when mosaicking results from adjacent flightlines. With the advent of large airborne imaging efforts from NASA and the U.S. National Ecological Observatory Network (NEON), there is increasing need for methods that are flexible and automatable across images with diverse land cover. Flexible bidirectional reflectance distribution function (FlexBRDF) is built upon the widely used kernel method, with additional features including stratified random sampling across flightline groups, dynamic land cover stratification by normalized difference vegetation index (NDVI), interpolation of correction coefficients across NDVI bins, and the use of a reference solar zenith angle. We demonstrate FlexBRDF using nine long (150–400 km) airborne visible/infrared imaging spectrometer (AVIRIS)‐Classic flightlines collected on 22 May 2013 over Southern California, where diverse land cover and a wide range of solar illumination yield significant BRDF effects. We further test the approach on additional AVIRIS‐Classic data from California, AVIRIS‐Next Generation data from the Arctic and India, and NEON imagery from Wisconsin. Comparison of overlapping areas of flightlines show that models built from multiple flightlines performed better than those built for single images (root mean square error improved up to 2.3% and mean absolute deviation 2.5%). Standardization to a common solar zenith angle among a flightline group improved performance, and interpolation across bins minimized between‐bin boundaries. While BRDF corrections for individual sites suffice for local studies, FlexBRDF is an open source option that is compatible with bulk processing of large airborne data sets covering diverse land cover needed for calibration/validation of forthcoming spaceborne imaging spectroscopy missions. 
    more » « less