skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-shot and single-shot time-resolved visualization of material modification during laser micromachining with flexible glass
We visualize material modification during laser micromachining, in particular, laser waveguide fabrication in flexible Corning® Willow® Glass via time-resolved interferometry, and single-shot frequency-domain holography which is a robust technique for studying permanent material change/damage.  more » « less
Award ID(s):
1707237
PAR ID:
10180899
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 Conference on Lasers and Electro-Optics (CLEO)
Page Range / eLocation ID:
JTu2A.58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use frequency domain holography (FDH) to spatio-temporally visualize the laser-matter interaction caused by the optical Kerr effect and plasma in flexible Corning® Willow® Glass in a single-shot. 
    more » « less
  2. We measure the nonlinear index of refraction (n2) and investigate plasma dynamics in flexible Corning® Willow® Glass using single-shot Frequency Domain Holography (FDH). Flexible glass has received a lot of attention recently due to various applications such as 3-D photonics and wearable devices. Femtosecond laser micromachining (FLM) is a viable tool to fabricate these devices because of minimal thermal effects and thus enables fabrication of small and clean 3-D structures. To control and understand the underlying dynamics of FLM, ultrafast visualization of plasma and optical Kerr effect is important. FDH is a robust femtosecond time-resolved technique in which chirped reference and probe pulses centered at 404 nm are used to measure and visualize the plasma and Kerr effect produced by an intense, ultrashort pump pulse centered at 808 nm. Using FDH, we study laser-matter interactions in Willow Glass and measure its n2 to be 3.41 +/-0.08 ×10-16 cm2/W and visualize the plasma dynamics. 
    more » « less
  3. Scaled physical experiments allow us to directly observe deformational processes that take place on time and length scales that are impossible to observe in the Earth’s crust. Successful evaluation of advection and uplift of material within a restraining bend along a strike-slip fault zone depends on capturing the evolution of strain in three dimensions. Consequently, we require deformation within the horizontal plane as well as vertical motions. While 3D digital image correlation systems can provide this information, their high costs have prompted us to develop techniques that require only two DSLR cameras and a few Matlab® toolboxes, which are available to researchers at many institutions. Matlab® plug-ins can perform particle image velocimetry (PIV), a technique used in many analog modeling studies to map the incremental displacements fields. For tracking material advection throughout experiments more suitable Matlab® plug-ins perform particle tracking velocimetry (PTV), which tracks the complete two-dimensional displacement path of individual particles. To capture uplift the Matlab® Computer Vision ToolboxTM, uses pairs of photos to capture the evolving topography of the experiment. The stereovision approach eliminates the need to stop the experiment to perform 3D laser scans, which can be problematic when working with materials that have time dependent rheology. We demonstrate how the combination of PIV, PTV, and stereovision analysis of experiments that simulate the Mount McKinley restraining bend reveal the evolution of the fault system and three-dimensional advection of material through the bend. 
    more » « less
  4. Laser Induced Deep Etching (LIDE®), developed by LPKF, is a maskless laser processing method capable of patterning glass microstructures similar to microfluidics created by PDMS soft lithography. Here, we demonstrate a self-digitized droplet microfluidics chip with high aspect-ratio features and fine resolution via the LIDE® technology. LIDE® provides the means to translate microfluidic designs into glass in a process suitable for low-cost and high-volume manufacturing. 
    more » « less
  5. This work describes a novel approach to patterning Indium Tin Oxide (ITO) on Polyvinylidene Fluoride (PVDF) using a laser cut Kapton® tape mask for rapid prototyping. Measurements taken before and after experimentation conclude a non-significant change in sheet resistance while using this method to pattern with a p-value of 0.2947 for a two-tailed paired t-test for significance. 
    more » « less