skip to main content


Title: Colossal Magnetoelectric Effect in Core–Shell Magnetoelectric Nanoparticles
Magnetoelectric coefficient values of above 5 and 2 V cm–1 Oe–1 in 20 nm CoFe2O4–BaTiO3 and NiFe2O4–BaTiO3 core–shell magnetoelectric nanoparticles were demonstrated. These colossal values, compared to 0.1 V cm–1 Oe–1 commonly reported for the 0–3 system, are attributed to (i) the heterostructural lattice-matched interface between the magnetostrictive core and the piezoelectric shell, confirmed through transmission electron microscopy, and (ii) in situ scanning tunneling microscopy nanoprobe-based ME characterization. The nanoprobe technique allows measurements of the ME effect at a single-nanoparticle level which avoids the charge leakage problem of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information processing to nanomedicine and brain–machine interfaces.  more » « less
Award ID(s):
1935841
NSF-PAR ID:
10181001
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
ISSN:
1530-6984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed by electron and scanning probe microscopy. The values of magnetization of pure hexagonal ferrite fibers compared well with bulk ferrite values. The coaxial fibers showed good ferroelectric polarization, with a maximum value of 0.85 μC/cm2 and 2.44 μC/cm2 for fibers with BTO core–Co2W shell and PZT core–Ni2Y shell structures, respectively. The magnetization, however, was much smaller than that for bulk hexaferrites. Magneto-electric (ME) coupling strength was characterized by measuring the ME voltage coefficient (MEVC) for magnetic field-assembled films of coaxial fibers. Among the fibers with Y-type, films with Zn2Y showed a higher MEVC than films with Ni2Y, and fibers with Co2W had a higher MEVC than that of those with Zn2W. The highest MEVC of 20.3 mV/cm Oe was measured for Co2W–PZT fibers. A very large ME response was measured in all of the films, even in the absence of an external magnetic bias field. The fibers studied here have the potential for use in magnetic sensors and high-frequency device applications. 
    more » « less
  2. Abstract

    This report is on studies directed at the nature of magneto-electric (ME) coupling by ferromagnetic resonance (FMR) under an electric field in a coaxial nanofiber of nickel ferrite (NFO) and lead zirconate titanate (PZT). Fibers with ferrite cores and PZT shells were prepared by electrospinning. The core–shell structure of annealed fibers was confirmed by electron- and scanning probe microscopy. For studies on converse ME effects, i.e., the magnetic response of the fibers to an applied electric field, FMR measurements were done on a single fiber with a near-field scanning microwave microscope (NSMM) at 5–10 GHz by obtaining profiles of both amplitude and phase of the complex scattering parameterS11as a function of bias magnetic field. The strength of the voltage-ME couplingAvwas determined from the shift in the resonance fieldHrfor bias voltage ofV = 0–7 V applied to the fiber. The coefficientAvfor the NFO core/PZT shell structure was estimated to be − 1.92 kA/Vm (− 24 Oe/V). A model was developed for the converse ME effects in the fibers and the theoretical estimates are in good agreement with the data.

     
    more » « less
  3. In this work, we have prepared intergrowth of multiferroic compounds namely Bi4RTi3Fe0.7Co0.3O15-Bi3RTi2Fe0.7Co0.3O12−δ (BRTFCO15-BRTFCO12) (rare earth (R) = Dy, Sm, La) by solid-state reaction method. From the X-ray diffraction Rietveld refinement, the structure of the intergrowths was found to be orthorhombic in which satisfactory fittings establish the existence of three-layered (space group: b 2 c b) and four-layered compounds (space group: A21am). Analysis of magnetic measurements confirmed a larger magnetization for theSm-modified intergrowth compound (BSTFCO15-BSTFCO12) compared to Dy- and La-doped ones. The emergence of higher magnetic properties can be due to distortion in the unit cell when some Bi3+ ions are replaced with the Sm3+, bonding of Fe3+-O-Co3+ as well as a possible mixture of FexCoy-type nanoparticles that are formed generally in the synthesis of intergrowths. The changes in the magnetic state of the Aurivillius intergrowths have been reflected in the magnetoelectric (ME) coupling: higher ME coefficient (~30 mV/Cm-Oe) at lower magnetic fields and is constant up to 3 kOe. The results were corroborated by Raman spectroscopy and variation of temperature with magnetization data. The results revealed that the RE-modified intergrowth route is an effective preparative method for higher-layer Aurivillius multiferroic ceramics. 
    more » « less
  4. Abstract

    The fabrication and characterization of the first magnetoelectric sensors utilizing arrays of Janus magnetoelectric composite nanowires composed of barium titanate and cobalt ferrite are presented. By utilizing magnetoelectric nanowires suspended across electrodes above the substrate, substrate clamping is reduced when compared to layered thin-film architectures; this results in enhanced magnetoelectric coupling. Janus magnetoelectric nanowires are fabricated by sol–gel electrospinning, and their length is controlled through the electrospinning and calcination conditions. Using a directed nanomanufacturing approach, the nanowires are then assembled onto pre-patterned metal electrodes on a silicon substrate using dielectrophoresis. Using this process, functional magnetic field sensors are formed by connecting many nanowires in parallel. The observed magnetic field sensitivity from the parallel array of nanowires is 0.514 ± .027 mV Oe−1at 1 kHz, which translates to a magnetoelectric coefficient of 514 ± 27 mV cm−1 Oe−1.

     
    more » « less
  5. Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2 . Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm. 
    more » « less