Context. Brown dwarfs are transition objects between stars and planets that are still poorly understood, for which several competing mechanisms have been proposed to describe their formation. Mass measurements are generally difficult to carry out for isolated objects as well as for brown dwarfs orbiting low-mass stars, which are often too faint for a spectroscopic follow-up. Aims. Microlensing provides an alternative tool for the discovery and investigation of such faint systems. Here, we present an analysis of the microlensing event OGLE-2019-BLG-0033/MOA-2019-BLG-035, which is caused by a binary system composed of a brown dwarf orbiting a red dwarf. Methods. Thanks to extensive ground observations and the availability of space observations from Spitzer, it has been possible to obtain accurate estimates of all microlensing parameters, including the parallax, source radius, and orbital motion of the binary lens. Results. Following an accurate modeling process, we found that the lens is composed of a red dwarf with a mass of M 1 = 0.149 ± 0.010 M ⊙ and a brown dwarf with a mass of M 2 = 0.0463 ± 0.0031 M ⊙ at a projected separation of a ⊥ = 0.585 au. The system has a peculiar velocity that is typical of old metal-poor populations in the thick disk. A percent-level precision in the mass measurement of brown dwarfs has been achieved only in a few microlensing events up to now, but will likely become more common in the future thanks to the Roman space telescope. 
                        more » 
                        « less   
                    
                            
                            OGLE-2017-BLG-1038: A Possible Brown-dwarf Binary Revealed by Spitzer Microlensing Parallax
                        
                    
    
            Abstract We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M 1 = 170 − 50 + 40 M J and M 2 = 110 − 30 + 20 M J ), or well below ( M 1 = 22.5 − 0.4 + 0.7 M J and M 2 = 13.3 − 0.3 + 0.4 M J ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2108414
- PAR ID:
- 10429525
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 3
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a short-duration anomaly (~0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ^{2} = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet M_{p}=3.26^{+0.83}_{-0.58} M_{J} orbiting an M dwarf M_{h} = 0.42^{+0.34}_{-0.23} M_{⊙} at a distance D_{L} = 5.83^{+1.04}_{-1.55} kpc. The projected star-planet separation is a_{⊥} = 2.18^{+0.58}_{-0.72} AU, which indicates that the planet lies beyond the snow line of the host star.more » « less
- 
            We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a short-duration anomaly (~0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ^{2} = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet M_{p}=3.26^{+0.83}_{-0.58} M_{J} orbiting an M dwarf M_{h} = 0.42^{+0.34}_{-0.23} M_{⊙} at a distance D_{L} = 5.83^{+1.04}_{-1.55} kpc. The projected star-planet separation is a_{⊥} = 2.18^{+0.58}_{-0.72} AU, which indicates that the planet lies beyond the snow line of the host star.more » « less
- 
            We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.more » « less
- 
            Aims. We investigate the microlensing event KMT-2021-BLG-0322, for which the light curve exhibits three distinctive sets of caustic-crossing features. It is found that the overall features of the light curve are approximately described by a binary-lens (2L1S) model, but the model leaves substantial residuals. We test various interpretations with the aim of explaining the residuals. Methods. We find that the residuals can be explained either by considering a nonrectilinear lens-source motion caused by the microlens-parallax and lens-orbital effects or by adding a low-mass companion to the binary lens (3L1S model). The degeneracy between the higher-order 2L1S model and the 3L1S model is very severe, making it difficult to single out a correct solution based on the photometric data. This degeneracy was known before for two previous events (MACHO-97-BLG-41 and OGLE-2013-BLG-0723), which led to the false detections of planets in binary systems, and thus the identification of the degeneracy for KMT-2021-BLG-0322 illustrates that the degeneracy can be not only common but also very severe, emphasizing the need to check both interpretations of deviations from 2L1S models. Results. From the Bayesian analysis conducted with the measured lensing observables of the event timescale, angular Einstein radius, and microlens parallax, it was estimated that the binary lens components have masses ( M 1 , M 2 ) = (0.62 −0.26 +0.25 M ⊙ , 0.07 −0.03 +0.03 M ⊙ ), for both 2L1S and 3L1S solutions, and the mass of the tertiary lens component according to the 3L1S solution is M 3 = 6.40 −2.78 +2.64 M J .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    