skip to main content


Title: Particle formation and surface processes on atmospheric aerosols: A review of applied quantum chemical calculations
Abstract

Aerosols significantly influence atmospheric processes such as cloud nucleation, heterogeneous chemistry, and heavy‐metal transport in the troposphere. The chemical and physical complexity of atmospheric aerosols results in large uncertainties in their climate and health effects. In this article, we review recent advances in scientific understanding of aerosol processes achieved by the application of quantum chemical calculations. In particular, we emphasize recent work in two areas: new particle formation and heterogeneous processes. Details in quantum chemical methods are provided, elaborating on computational models for prenucleation, secondary organic aerosol formation, and aerosol interface phenomena. Modeling of relative humidity effects, aerosol surfaces, and chemical kinetics of reaction pathways is discussed. Because of their relevance, quantum chemical calculations and field and laboratory experiments are compared. In addition to describing the atmospheric relevance of the computational models, this article also presents future challenges in quantum chemical calculations applied to aerosols.

 
more » « less
Award ID(s):
1903871 1828508 1801971 2018427
NSF-PAR ID:
10456788
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Quantum Chemistry
Volume:
120
Issue:
20
ISSN:
0020-7608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42−)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323µg m−3 with a mean of (141  ±  88 (1σ))µg m−3, with SO42− representing 8–25% of PM2.5 mass. The observed Δ17O(SO42−) varied from 0.1 to 1.6‰ with a mean of (0.9  ±  0.3)‰. Δ17O(SO42−) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75µg m−3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68%. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet) was estimated to contribute 41–54% to total sulfate formation with a mean of (48  ±  5)%. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫H2O+HSO3  +  SO32−) oxidation by H2O2 in aerosol water accounted for 5–13% of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21–22% of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66–73% of Phet. The assumption about the thermodynamic state of aerosols (stable or metastable) was found to significantly influence the calculated aerosol pH (7.6  ±  0.1 or 4.7  ±  1.1, respectively), and thus influence the relative importance of heterogeneous sulfate production via S(IV) oxidation by NO2 and by O2. Our local atmospheric conditions-based calculations suggest sulfate formation via NO2 oxidation can be the dominant pathway in aerosols at high-pH conditions calculated assuming stable state while S(IV) oxidation by O2 can be the dominant pathway providing that highly acidic aerosols (pH ≤ 3) exist. Our local atmospheric-conditions-based calculations illustrate the utility of Δ17O(SO42−) for quantifying sulfate formation pathways, but this estimate may be further improved with future regional modeling work.

     
    more » « less
  2. Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment. 
    more » « less
  3. The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique – pH paper – currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient ( R 2 ) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate. 
    more » « less
  4. Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

     
    more » « less
  5. Abstract

    The photocatalytic decomposition of atmospheric methane (CH4) and nitrous oxide (N2O) could be valuable tools for mitigating climate change; however, to date, few photocatalyst deployment strategies have had their costs modeled. Here, we construct basic cost models of three photocatalytic CH4 and N2O decomposition systems: 1) a ground-based solar system with natural airflow over photocatalyst-painted rooftops, 2) a ground-based LED-lit system with fan-driven airflow, and 3) an aerosol-based solar system on solid particles dispersed in the atmosphere. Each model takes as inputs the photocatalyst’s apparent quantum yield (AQY; a measure of how efficiently photons drive a desired chemical reaction) and the local CH4 or N2O concentration. Each model calculates an overall rate of greenhouse gas drawdown and returns a levelized cost of greenhouse gas removal per equivalent ton of carbon dioxide (tCO2e). Based on prior studies of atmospheric carbon dioxide removal, we adopt $100/tCO2e as a target cost. We estimate that painting rooftops with photocatalysts might meet the target cost for decomposition of >10ppm CH4 with catalyst AQYs >4%. If painting and cleaning costs were reduced by a factor of ~3 from our scenario, removal of ambient CH4 could meet the cost target with AQYs >1% and removal of ambient N2O could do so with AQYs >0.1%. Fan-driven systems with LED illumination appear to be very challenging, achieving removal costs <$100/tCO2e only for AQYs of >10% for CH4 and >1% for N2O. Dispersing photocatalytic aerosols in the troposphere could be cost-effective with AQYs of >0.4% for ambient CH4 or >0.04% for ambient N2O. However, the mass of aerosols required is large and their side effects and social acceptability are uncertain. We note that, for any system, AQYs on the order of 1% will likely be extremely challenging to achieve with such dilute reagents.

     
    more » « less