skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bamboo Reinforced Concrete: Lesson Learned, Prohibitions and Opportunities
The use of small diameter whole-culm (bars) and/or split bamboo (a.k.a. splints or strips) has often been proposed as an alternative to reinforcing steel in reinforced concrete. The motivation for such replacement is typically cost and the drive to find more sustainable alternatives in the construction industry. Although bamboo is a material with extraordinary mechanical properties, this paper will summarise the reasons that for most load-bearing applications, bamboo-reinforced concrete is an ill-considered concept: having significant durability, strength and stiffness issues. Additionally, it is argued that bamboo-reinforced concrete does not possess the environmentally friendly credentials often attributed to it. Finally, the authors identify applications in which bamboo reinforcement may prove an acceptable alternative to steel provided durability concerns can be addressed.  more » « less
Award ID(s):
1634739
PAR ID:
10181500
Author(s) / Creator(s):
Date Published:
Journal Name:
18th International Conference on Non-Conventional Materials and Technologies (18NOCMAT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of small diameter whole-culm (bars) and/or split bamboo (a.k.a. splints or strips) has often been proposed as an alternative to reinforcing steel in reinforced concrete. The motivation for such replacement is typically cost and the drive to find more sustainable alternatives in the construction industry. Although bamboo is a material with extraordinary mechanical properties, this paper will summarise the reasons that for most load-bearing applications, bamboo-reinforced concrete is an ill-considered concept: having significant durability, strength and stiffness issues. Additionally, it is argued that bamboo-reinforced concrete does not possess the environmentally friendly credentials often attributed to it. Finally, the authors identify applications in which bamboo reinforcement may prove an acceptable alternative to steel provided durability concerns can be addressed. 
    more » « less
  2. null (Ed.)
    Abstract Within the last century, coastal structures for infrastructure applications have traditionally been constructed with timber, structural steel, and/or steel-reinforced/prestressed concrete. Given asset owners’ desires for increased service-life; reduced maintenance, repair and rehabilitation; liability; resilience; and sustainability, it has become clear that traditional construction materials cannot reliably meet these challenges without periodic and costly intervention. Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for several decades, demonstrating their ability to provide reduced maintenance costs, extend service life, and significantly increase design durability. This paper explores a representative sample of these applications, related specifically to internal reinforcement for concrete structures in both passive (RC) and pre-tensioned (PC) applications, and contrasts them with the time-dependent effect and cost of corrosion in transportation infrastructure. Recent development of authoritative design guidelines within the US and international engineering communities is summarized and a examples of RC/PC verses FRP-RC/PC presented to show the sustainable (economic and environmental) advantage of composite structures in the coastal environment. 
    more » « less
  3. Abstract Glass fiber reinforced polymer (GFRP) bars are composite materials that, in the field of civil engineering, serve as an alternative for the internal steel reinforcement of concrete structures. The study and development of these material systems in construction are relatively new, requiring targeted research and development to achieve greater adoption. In this scenario, research and standardization play crucial roles. The development and publication of new test methods, material specifications, and other standards, as well as the improvement of the existing ones, allow for quality control, validation, and acceptance. One of these improvements is the evaluation of precision statements of the different ASTM standards related to the physical-mechanical and durability characterization of GFRP bars used as internal concrete reinforcement. Precision refers to how closely test results obtained under specific conditions agree with each other. A precision statement allows potential users to assess the test method’s general suitability for their intended applications. It should provide guidance on the type of variation that can be expected between test results when the method is used in one or more competent laboratories. The present study aims to enhance the precision statements in ASTM standards pertaining to the geometric, material, mechanical, and physical properties required for GFRP bars in concrete reinforcement, including ASTM standards like ASTM D7205M-21, Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM D7617M-11(2017), Standard Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars; and ASTM D7913M-14(2020), Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing, while in accordance with the statistical procedures and calculation methods outlined in ASTM Practices ASTM E177-20, Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, and ASTM E691-22, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method. 
    more » « less
  4. The present work investigates progressive damage in steel-reinforced concrete structures. An elastic-perfectly plastic material response is considered for the reinforcing steel constituent, while the smeared-crack approach is applied to model the nonlinear behavior of concrete. The analysis employs one-dimensional numerical models based on higher-order finite elements derived using the Carrera unified formulation (CUF). A set of numerical assessments is presented to study the mechanical response of a steel-reinforced notched concrete beam loaded in tension. The predictions are found to be in very good agreement with reference experimental observations, thereby validating the numerical approach. It is shown that CUF allows for the explicit representation of the constituents within the composite beam, resulting in accurate solutions in a computationally efficient manner. 
    more » « less
  5. Fiber-reinforced concrete (FRC) can have improved durability and tensile properties, potentially enabling the more efficient use of concrete and lowering greenhouse gas (GHG) emissions. Yet, systematic quantifications of the environmental impacts of FRC, particularly when paired with changes to mechanical properties and the implications for material longevity, are limited. Herein, an assessment following the life-cycle assessment methodology for four common FRCs was performed, namely, those reinforced with polyvinyl alcohol (PVA), steel (ST), polypropylene (PP), and polyethylene terephthalate (PET). The analysis was bound to a cradle-to-gate scope, and solely virgin fiber material production was considered for the environmental impacts. Coupled changes in compressive and tensile strength, environmental impacts, and the role of material longevity and cost relative to unreinforced concrete were examined. Findings from this work show that, similar to unreinforced concrete, cement remains a key source of GHG emissions in FRC production. However, in FRCs fibers can drive additional emissions by up to 55%. Notably, PVA and ST led to the highest impacts and costs, which were minimal for inclusions of PP and PET. Yet ST contributed to the greatest benefits in flexural and compressive strengths. When the effects of longevity were integrated, FRC with PP reinforcement could offer desired emissions reductions with minimal increase in use period and cost, but the other fiber reinforcements considered may need to offer longer service life extension to reduce emissions compared with conventional concrete. These results indicate that FRC can enhance mechanical performance, but fiber type selections should be informed by the design life to achieve actual GHG emissions reductions. 
    more » « less