Vernacular visualizations are visual representations of information created by and for non-expert users, in contrast to those developed by experts for specialized audiences. Research looking at everyday design practices and the democratization of innovation indicates that deeper understanding of non-expert design practices has a positive impact on technology development. This qualitative study focuses on the creation, use and dissemination of vernacular visualizations in a citizen science project. Findings from this research (1) map visualization practices in an established citizen science project, (2) contribute to theoretical understanding of the ways in which vernacular visualization practices support data-rich collaborative and coordinated work, and (3) suggest ways in which visualizations and visual resources can be evaluated in terms of their abilities to enrich coordination and communication in these contexts.
more »
« less
Grand Challenge or Oxymoron? Codes and Standards Development for Nonconventional Materials
Development of construction and materials standards serve technical, social and economic objectives. Most significantly, standards are required for the acceptance of materials by the engineering community. This paper contrasts the characteristics of codes and standards, and their development, for engineered materials and those for nonconventional and vernacular materials. Challenges associated with code and standard development for these materials are highlighted and discussed through case studies. Recommendations for approaches to codes and standards development for nonconventional and vernacular materials are presented.
more »
« less
- Award ID(s):
- 1634739
- PAR ID:
- 10181501
- Date Published:
- Journal Name:
- 18th International Conference on Non-Conventional Materials and Technologies (18NOCMAT)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Building-integrated photovoltaic (BIPV) systems blend energy generation with traditional architectural facade functions, promoting the development of zero-energy buildings by reducing energy consumption, lowering greenhouse gas emissions, and enhancing aesthetic value. Despite these benefits, the integration of photovoltaic technology into building materials introduces challenges, notably in ensuring structural integrity, maintaining thermal performance, and securing long-term durability under diverse environmental conditions. This review examines current standards and building codes relevant to BIPV windows, highlighting the necessity for testing protocols that encompass combined stressors from extreme weather events exacerbated by climate change. Through a case study focused on Singapore, the review underscores the rising frequency of combined heat and wind events, advocating for robust standards and adaptive policies. The paper identifies critical research gaps and proposes future directions to enhance the reliability and performance of BIPV systems, aiming to solidify their role in sustainable building practices.more » « less
-
The third industrial revolution has brought mankind into the information age. The development of information storage materials has played a key role in this transformation. Such materials have seen use in many application areas, including computing, logistics, and medicine. Information storage materials run the gamut from magnetic information storage media to molecular-based information storage materials. Among these, fluorescent-based information storage materials are of particular interest due to their unique properties, including an ability to store information with high levels of security, maintain mechanical stability, and respond to appropriately chosen external stimuli. In this review, we focus on recent advances involving the preparation and study of fluorescent materials-based information storage codes. For organisational purposes, these codes are treated according to the dimensionality of the code system in question, namely 1D-, 2D-, and 3D-type codes. The present review is designed to provide a succinct summary of what has been accomplished in the area, while outlining existing challenges and noting directions for future development.more » « less
-
Research on TESOL materials development has focused primarily on instructional materials for contexts in which students are learning English separate from academic content (e.g., science, mathematics). This research could benefit from expansion given the increasing number of contexts in which students are learning content and English language simultaneously. In U.S. K–12 education specifically, a fast‐growing population of English learners (ELs) is expected to achieve academically rigorous content standards that reflect new ways of thinking about content, language, and their integration. Thus, developing instructional materials based on the standards has necessitated shifts from traditional to contemporary approaches. The purpose of this article is to illustrate how instructional materials for ELs in the content areas have evolved over time. After describing conceptual shifts in the fields of content area education and language education that underpin the evolution of instructional materials, the researchers present traditional and contemporary elementary science units. Then, they analyze the units in relation to key features of traditional and contemporary materials for ELs in the content areas. Finally, they discuss how materials development in content learning contexts could expand the scope of TESOL materials development by providing a fresh perspective on ongoing debates and tensions in this vibrant research area.more » « less
-
Abstract Disasters provide an invaluable opportunity to evaluate contemporary design standards and construction practices; these evaluations have historically relied upon experts, which inherently limited the speed, scope and coverage of post-disaster reconnaissance. However, hybrid assessments that localize data collection and engage remote expertise offer a promising alternative, particularly in challenging contexts. This paper describes a multi-phase hybrid assessment conducting rapid assessments with wide coverage followed by detailed assessments of specific building subclasses following the 2021 M7.2 earthquake in Haiti, where security issues limited international participation. The rapid assessment classified and assigned global damage ratings to over 12,500 buildings using over 40 non-expert local data collectors to feed imagery to dozens of remote engineers. A detailed assessment protocol then conducted component-level evaluations of over 200 homes employing enhanced vernacular construction, identified via machine learning from nearly 40,000 acquired images. A second mobile application guided local data collectors through a systematic forensic documentation of 30 of these homes, providing remote engineers with essential implementation details. In total, this hybrid assessment underscored that performance in the 2021 earthquake fundamentally depended upon the type and consistency of the bracing scheme. The developed assessment tools and mobile apps have been shared as a demonstration of how a hybrid approach can be used for rapid and detailed assessments following major earthquakes in challenging contexts. More importantly, the open datasets generated continue to inform efforts to promote greater use of enhanced vernacular architecture as a multi-hazard resilient typology that can deliver life-safety in low-income countries.more » « less
An official website of the United States government

