skip to main content

Title: State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]

This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.

Authors:
; ;
Award ID(s):
1637961 1763689
Publication Date:
NSF-PAR ID:
10181570
Journal Name:
Journal of the Optical Society of America A
Volume:
37
Issue:
9
Page Range or eLocation-ID:
Article No. B60
ISSN:
1084-7529; JOAOD6
Publisher:
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elastic gridshell is a class of net-like structure formed by an ensemble of elastically deforming rods coupled through joints, such that the structure can cover large areas with low self-weight and allow for a variety of aesthetic configurations. Gridshells, also known as X-shells or Cosserat Nets, are a planar grid of elastic rods in its undeformed configuration. The end points of the rods are constrained and positioned on a closed curve—the final boundary—to actuate the structure into a 3D shape. Here, we report a discrete differential geometry-based numerical framework to study the geometrically nonlinear deformation of gridshell structures, accounting for non-trivial bending-twisting coupling at the joints. The form-finding problem of obtaining the undeformed planar configuration given the target convex 3D topology is then investigated. For the forward (2D to 3D) physically based simulation, we decompose the gridshell structure into multiple one-dimensional elastic rods and simulate their deformation by the well-established discrete elastic rods (DER) algorithm. A simple penalty energy between rods and linkages is used to simulate the coupling between two rods at the joints. For the inverse problem associated with form-finding (3D to 2D), we introduce a contact-based algorithm between the elastic gridshell and a rigid 3D surface,more »where the rigid surface describes the target shape of the gridshell upon actuation. This technique removes the need of several forward simulations associated with conventional optimization algorithms and provides a direct solution to the inverse problem. Several examples—hemispherical cap, paraboloid, and hemi-ellipsoid—are used to show the effectiveness of the inverse design process.« less
  2. Copper oxide nanostructures are widely used for various applications due to their unique optical and electrical properties. In this work, we demonstrate an atmospheric laser-induced oxidation technique for the fabrication of highly electrochemically active copper oxide hierarchical micro/nano structures on copper surfaces to achieve highly sensitive non-enzymatic glucose sensing performance. The effect of laser processing power on the composition, crystallinity, microstructure, wettability, and color of the laser-induced oxide on copper (LIO-Cu) surface was systematically studied using scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), EDX-mapping, water contact angle measurements, and optical microscopy. Results of these investigations showed a remarkable increase in copper oxide composition by increasing the laser processing power. The pore size distribution and surface area of the pristine and LIO-Cu sample estimated by N 2 adsorption–desorption data showed a developed mesoporous LIO-Cu structure. The size of the generated nano-oxides, crystallinity, and electroactivity of the LIO-Cu were observed to be adjustable by the laser processing power. The electrocatalytic activity of LIO-Cu surfaces was studied by means of cyclic voltammetry (CV) within a potential window of −0.8 to +0.8 V and chronoamperometry in an applied optimized potential of +0.6 V, in 0.1more »M NaOH solution and phosphate buffer solution (PBS), respectively. LIO-Cu surfaces with optimized laser processing powers exhibited a sensitivity of 6950 μA mM −1 cm −2 within a wide linear range from 0.01 to 5 mM, with exceptional specificity and response time (<3 seconds). The sensors also showed excellent response stability over a course of 50 days that was originated from the binder-free robust electroactive film fabricated directly onto the copper surface. The demonstrated one-step LIO processing onto commercial metal films, can potentially be applied for tuneable and scalable roll-to-roll fabrication of a wide range of high surface area metal oxide micro/nano structures for non-enzymatic biosensing and electrochemical applications.« less
  3. An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »electronics boxes housing power, data acquisition and data processing components in water resistant compartments. A laptop computer with 8 TB of external storage and an independent Global Positioning System (GPS) antenna is used to run Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) software providing beamformed spectrogram data and live NAS data with capability of capturing several days of data. The acquisition system consists of Surface Mount Device (SMD) pre-amplifiers with filter to an analog differential pair shipboard COTS acquisition system. Pre-amplifiers are constructed using SMD technology where components are pressure tolerant and potting is not necessary. Potting of connectors, electronics and hydrophones via 3D printed molding techniques will be discussed. Array internal components are manufactured with Thermoplastic Polyurethane (TPU) 3D printed material to dampen array vibrations with forward and aft vibration isolation modules (VIM). Polyurethane foam (PUF) used to scatter breathing waves and dampen contact from wires inside the array without attenuating high frequencies and allowing for significant noise reduction. A single Tygon array section with a length of 7.5 m and diameter of 38 mm contains 8 transducer elements with a spacing of 75 cm (1 kHz design frequency). Pre- amplifiers and NAS modules are affixed using Vectran and steel wire rope positioned by swaged stops along the strength member. The tow cable length is 100 m with a diameter of 22 mm that is potted to a hose adapter to break out 12 braided copper wire twisted pair conductors and terminates the tow cable Vectran braid. This array in its current state of development is a low-cost alternative to obtain quality acoustic data from a towed array system. Used here for observation of whale vocalizations, this type of array also has many applications in military sonar and seismic surveying. Maintenance on the array can be performed without the use of special facilities or equipment for dehosing and conveniently uses castor oil as an environmentally safe pressure compensating and coupling fluid. Array development including selection of transducers, NAS modules, acoustic acquisition system, array materials and method of construction with results from several deployments will be discussed. We also present beamformed spectrograms containing humpback whale downsweep moans and underwater blowing (bubbles) sounds associated with feeding on sand lance (Ammodytes dubius).« less
  4. Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate thatmore »the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.

    « less
  5. The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to “cytoquakes” or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.