skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full-Field Operating Deflection Shape Measurement of a Structure With a Curved Surface Using a Three-Dimensional Continuously Scanning Laser Doppler Vibrometer System
Abstract This study proposes a novel general-purpose 3D continuously scanning laser Doppler vibrometer (CSLDV) system to measure 3D full-field vibration of a structure with a curved surface in a non-contact and fast way. The proposed 3D CSLDV system consists of three CSLDVs, a profile scanner, and an external controller, and is experimentally validated by measuring 3D full-field vibration of a turbine blade with a curved surface under sinusoidal excitation and identifying its operating deflection shapes (ODSs). A 3D zig-zag scan path is proposed for scanning the curved surface of the blade based on results from the profile scanner, and 6scan angles of mirrors in CSLDVs are adjusted based on relations among their laser beams to focus three laser spots at one location, and direct them to continuously and synchronously scan the proposed 3D scan path. A signal processing method that is referred to as the demodulation method is used to identify 3D ODSs of the blade. The first six ODSs from 3D CSLDV measurement have good agreement with those from a commercial 3D SLDV system with modal assurance criterion values larger than 95%. In the experiment, it took the 3D SLDV system about 900 seconds to scan 85 measurement points, and the 3D CSLDV system 115.5 seconds to scan 132,000 points, indicating that the 3D CSLDV system proposed in this study is much more efficient than the 3D SLDV system for measuring 3D full-field vibration of a structure with a curved surface.  more » « less
Award ID(s):
1763024
PAR ID:
10451732
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2022 International Mechanical Engineering Congress and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A new operational modal analysis (OMA) method that is based on a rigorous nonuniform rotating beam vibration theory and an image processing method is developed to estimate modal parameters (MPs) of a rotating structure (RS) under random excitation using an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying scan path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoidal signals with its damped natural frequencies (DNFs) obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors. 
    more » « less
  2. A continuously scanning laser Doppler vibrometer (CSLDV) system is capable of efficient and spatially dense vibration measurements by sweeping its laser spot along a scan path assigned on a structure. This paper proposes a new operational modal analysis (OMA) method based on a data processing method for CSLDV measurements of a structure, called the lifting method, under white-noise excitation and applies a baseline-free method to identify structural damage using estimated mode shapes from the OMA method. The lifting method enables transformation of raw CSLDV measurements into measurements at individual virtual measurement points, as if the latter were made by use of an ordinary scanning laser Doppler vibrometer in a step-wise manner. It is shown that a correlation function with nonnegative time delays between lifted CSLDV measurements at two virtual measurement points on a structure under white-noise excitation and its power spectrum contain modal parameters of the structure, that is, natural frequencies, modal damping ratios, and mode shapes. The modal parameters can be estimated by using a standard OMA algorithm. A major advantage of the proposed OMA method is that curvature mode shapes associated with mode shapes estimated by the method can reflect local anomaly caused by small-sized structural damage, while those estimated by other existing OMA methods that use CSLDV measurements cannot. Numerical and experimental investigations are conducted to study the OMA method and baseline-free structural damage identification method. In the experimental investigation, effects of the scan frequency of a CSLDV system on the two methods were studied. It is shown in both the numerical and experimental investigations that modal parameters can be accurately estimated by the OMA method and structural damage can be successfully identified in neighborhoods with consistently high values of curvature damage indices. 
    more » « less
  3. Abstract Tensegrity structures become important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on their dynamic analyses mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study proposes a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer is used with a mirror for extending its field of view to measure full-field vibration of a novel three-strut metal tensegrity column with free boundaries. Tensions and axial stiffnesses of its cable members are determined using natural frequencies of their transverse and longitudinal modes, respectively, to build its theoretical model for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and theoretical mode shapes are used to identify their paired modes. Modal parameters of the first 15 elastic modes of the tensegrity column identified from the experiment, including those of the overall structure and its cable members, can be classified into five mode groups depending on their types. Modes paired between experimental and theoretical results have MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The proposed non-contact 3D vibration measurement approach allows accurate estimation of 3D full-field modal parameters of the tensegrity column. 
    more » « less
  4. Abstract Tensegrity structures have emerged as important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on dynamic analyses of tensegrity structures mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study aims to propose a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer (SLDV) is used with a mirror for extending its field of view to measure full-field vibration of a three-strut tensegrity column with free boundaries. Tensions and axial stiffnesses of cable members of the tensegrity column are determined using natural frequencies of their transverse and longitudinal modes, respectively, and used to build a numerical model of the tensegrity column for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and numerical mode shapes are used to identify their paired modes. Natural frequencies and mode shapes of the first 15 elastic modes of the tensegrity column are identified from the experiment, which include modes of the overall structure and its cable members. These identified modes can be classified into five mode groups depending on their types. Five modes are paired between experimental and numerical results with MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The non-contact 3D vibration measurement approach presented in this work can measure responses of nodal points, as well as deformations of cable and strut members, of the tensegrity column, and allows accurate estimation of its 3D full-field modal parameters. 
    more » « less
  5. Most 3D laser scanners are based on 3D optical triangulation algorithms, where the location of each 3D point is estimated as the intersection of a camera ray and a plane of light projected by a laser line generator. Since a physical laser line generator projects a sheet of light of finite thickness, inaccurate measurement and errors result from assuming that the plane of light is infinitesimally thin. We propose a new mathematical formulation for 3D optical triangulation based on interval arithmetic, where 3D points are only determined within certain bounds along the camera rays, and multiple measurements are used to tighten these bounds. We propose the Line Segment Cloud as an alternative surface representation to visualize the measurement errors within the proposed framework. We introduce the Iterative Line Segment Tightening algorithm to convert line segment clouds to point clouds, as a preprocessing step prior to surface reconstruction. We describe how to construct a low cost laser line 3D scanner, where the camera is fixed with respect to the object and the laser line generator is mounted on a high resolution motion platform. We describe a GPU-based implementation where the large number of captured images are processed in real time. Finally, we present some experimental results. 
    more » « less