skip to main content

Title: Control-oriented Modeling of Soft Robotic Swimmer with Koopman Operators
Interest in soft robotics has increased in recent years due to their potential in a myriad of applications. A wide variety of soft robots has emerged, including bio-inspired robotic swimmers such as jellyfish, rays, and robotic fish. However, the highly nonlinear fluid-structure interactions pose considerable challenges in the analysis, modeling, and feedback control of these soft robotic swimmers. In particular, developing models that are of high fidelity but are also amenable to control for such robots remains an open problem. In this work, we pro- pose a data-driven approach that exploits Koopman operators to obtain a linear representation of the soft swimmer dynamics. Specifically, two methodologies are explored for obtaining the basis functions of the the operator, one based on data-based derivatives estimated using high-gain observers, and the other based on the dynamics structure of a tail-actuated rigid-body robotic fish. The resulting approximate finite-dimensional operators are trained and evaluated using data from high-fidelity CFD simulations that incorporate fluid-structure interactions. Validation results demonstrate that, while both methods are promising in producing control-oriented models, the approach based on derivative estimates shows higher accuracy in state prediction.
; ; ; ; ;
Award ID(s):
1717951 1715714 1848945 1702987
Publication Date:
Journal Name:
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
Page Range or eLocation-ID:
1679 to 1685
Sponsoring Org:
National Science Foundation
More Like this
  1. Thanks to their flexibility, soft robotic devices offer critical advantages over rigid robots, allowing adaptation to uncertainties in the environment. As such, soft robots enable various intriguing applications, including human-safe interaction devices, soft active rehabilitation devices, and soft grippers for pick-and-place tasks in industrial environments. In most cases, soft robots use pneumatic actuation to inflate the channels in a compliant material to obtain the movement of the structure. However, due to their flexibility and nonlinear behavior, as well as the compressibility of air, controlled movements of the soft robotic structure are difficult to attain. Obtaining physically-based mathematical models, which would enable the development of suitable control approaches for soft robots, constitutes thus a critical challenge in the field. The aim of this work is, therefore, to predict the movement of a pneumatic soft robot by using a data-driven approach based on the Koopman operator framework. The Koopman operator allows simplifying a nonlinear system by“lifting” its dynamics into a higher dimensional space, where its behavior can be accurately approximated by a linear model, thus allowing a significant reduction of the complexity of the design of the resulting controllers.
  2. There has been an increasing interest in the use of autonomous underwater robots to monitor freshwater and marine environments. In particular, robots that propel and maneuver themselves like fish, often known as robotic fish, have emerged as mobile sensing platforms for aquatic environments. Highly nonlinear and often under-actuated dynamics of robotic fish present significant challenges in control of these robots. In this work, we propose a nonlinear model predictive control (NMPC) approach to path-following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while minimizing the control effort. Considering the cyclic nature of tail actuation, the control design is based on an averaged dynamic model, where the hydrodynamic force generated by tail beating is captured using Lighthill's large-amplitude elongated-body theory. A computationally efficient approach is developed to identify the model parameters based on the measured swimming and turning data for the robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are treated as physical variables to be manipulated, which are related to the control inputs via a nonlinear map. A control projection method is introduced to accommodate the sector-shaped constraints of the control inputs while minimizing the optimization complexity inmore »solving the NMPC problem. Both simulation and experimental results support the efficacy of the proposed approach. In particular, the advantages of the control projection method are shown via comparison with alternative approaches.« less
  3. This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results showmore »that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: wx0tdDta0.« less
  4. Abstract Systems whose movement is highly dissipative provide an opportunity to both identify models easily and quickly optimize motions. Geometric mechanics provides means for reduction of the dynamics by environmental homogeneity, while the dissipative nature minimizes the role of second order (inertial) features in the dynamics. Here we extend the tools of geometric system identification to ``Shape-Underactuated Dissipative Systems (SUDS)'' -- systems whose motions are more dissipative than inertial, but whose actuation is restricted to a subset of the body shape coordinates. Many animal motions are SUDS, including micro-swimmers such as nematodes and flagellated bacteria, and granular locomotors such as snakes and lizards. Many soft robots are also SUDS, particularly those robots using highly damped series elastic actuators. Whether involved in locomotion or manipulation, these robots are often used to interface less rigidly with the environment. We motivate the use of SUDS models, and validate their ability to predict motion of a variety of simulated viscous swimming platforms. For a large class of SUDS, we show how the shape velocity actuation inputs can be directly converted into torque inputs suggesting that systems with soft pneumatic actuators or dielectric elastomers can be modeled with the tools presented. Based on fundamental assumptionsmore »in the physics, we show how our model complexity scales linearly with the number of passive shape coordinates. This offers a large reduction on the number of trials needed to identify the system model from experimental data, and may reduce overfitting. The sample efficiency of our method suggests its use in modeling, control, and optimization in robotics, and as a tool for the study of organismal motion in friction dominated regimes.« less
  5. Abstract A new paradigm called physical reservoir computing has recently emerged, where the nonlinear dynamics of high-dimensional and fixed physical systems are harnessed as a computational resource to achieve complex tasks. Via extensive simulations based on a dynamic truss-frame model, this study shows that an origami structure can perform as a dynamic reservoir with sufficient computing power to emulate high-order nonlinear systems, generate stable limit cycles, and modulate outputs according to dynamic inputs. This study also uncovers the linkages between the origami reservoir’s physical designs and its computing power, offering a guideline to optimize the computing performance. Comprehensive parametric studies show that selecting optimal feedback crease distribution and fine-tuning the underlying origami folding designs are the most effective approach to improve computing performance. Furthermore, this study shows how origami’s physical reservoir computing power can apply to soft robotic control problems by a case study of earthworm-like peristaltic crawling without traditional controllers. These results can pave the way for origami-based robots with embodied mechanical intelligence .