skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamentals of soft thermofluidic system design
The soft composition of many natural thermofluidic systems allows them to effectively move heat and control its transfer rate by dynamically changing shape ( e.g. dilation or constriction of capillaries near our skin). So far, making analogous deformable “soft thermofluidic systems” has been limited by the low thermal conductivity of materials with suitable mechanical properties. By remaining soft and stretchable despite the addition of filler, elastomer composites with thermal conductivity enhanced by liquid-metal micro-droplets provide an ideal material for this application. In this work, we use these materials to develop an elementary thermofluidic system consisting of a soft, heat generating pipe that is internally cooled with flow of water and explore its thermal behavior as it undergoes large shape change. The transient device shape change invalidates many conventional assumptions employed in thermal design making analysis of this devices’ operation a non-trivial undertaking. To this end, using time scale analysis we demonstrate when the conventional assumptions break down and highlight conditions under which the quasi-static assumption is applicable. In this gradual shape modulation regime the actuated devices’ thermal behavior at a given stretch approaches that of a static device with equivalent geometry. We validate this time scale analysis by experimentally characterizing thermo-fluidic behavior of our soft system as it undergoes axial periodic extension–retraction at varying frequencies during operation. By doing so we explore multiple shape modulation regimes and provide a theoretical foundation to be used in the design of soft thermofluidic systems undergoing transient deformation.  more » « less
Award ID(s):
1724452
PAR ID:
10181999
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
29
ISSN:
1744-683X
Page Range / eLocation ID:
6924 to 6932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper focuses on the thermo-hydro-mechanical behavior of soft clay surrounding a prefabricated thermal drain. A prefabricated thermal drain combines features of a conventional prefabricated vertical drain (PVD) and a closed-loop geothermal heat exchanger by placing plastic tubing within the core of the PVD through which heated fluid can be circulated. The prefabricated thermal drain can be used to increase the temperature of the surrounding soft clay, which will generate excess pore water pressures due to differential thermal expansion of the pore fluid and clay particles. As these excess pore water pressures drain, the soft clay will experience volumetric contraction. The elevated temperature leads to an increase in the hydraulic conductivity and the volumetric contraction leads to an increase in thermal conductivity, making this a highly coupled process. Although thermal drains have been tested in proof of concept field experiments, there are still several variables that need to be better understood. This paper presents numerical simulations of the coupled heat transfer, water flow, and volume change in the soft soil surrounding a prefabricated thermal drain that were validated using the results from large-scale laboratory experiments. Numerical simulations were found to agree well with the experimental data. A further analysis on the performance of the thermal PVD indicates an increase in surface settlement with an increase in drain temperature and a significant reduction in the surcharge required when using a thermal PVD. 
    more » « less
  2. Abstract Condensation is ubiquitous in nature and industry. Heterogeneous condensation on surfaces is typified by the continuous cycle of droplet nucleation, growth, and departure. Central to the mechanistic understanding of the thermofluidic processes governing condensation is the rapid and high‐fidelity extraction of interpretable physical descriptors from the highly transient droplet population. However, extracting quantifiable measures out of dynamic objects with conventional imaging technologies poses a challenge to researchers. Here, an intelligent vision‐based framework is demonstrated that unites classical thermofluidic imaging techniques with deep learning to fundamentally address this challenge. The deep learning framework can autonomously harness physical descriptors and quantify thermal performance at extreme spatio‐temporal resolutions of 300 nm and 200 ms, respectively. The data‐centric analysis conclusively shows that contrary to classical understanding, the overall condensation performance is governed by a key tradeoff between heat transfer rate per individual droplet and droplet population density. The vision‐based approach presents a powerful tool for the study of not only phase‐change processes but also any nucleation‐based process within and beyond the thermal science community through the harnessing of big data. 
    more » « less
  3. Nicks, J. and (Ed.)
    This paper focuses on the behavior of prefabricated thermal drains used to improve saturated clay layers using heating. A prefabricated thermal drain can be formed by integrating a closed-loop geothermal heat exchanger within a conventional prefabricated vertical drain (PVD). Prefabricated thermal drains can be installed in a similar way to a PVD but operate by circulating a heated fluid through the heat exchanger tubing to induce an increase in temperature of the soft clay. This increase in temperature will lead to thermal consolidation, which can be accelerated by drainage through the PVD. Although thermal drains have been tested in proof of concept field experiments, there are still several variables that need to be better understood. This paper presents numerical simulations of the coupled heat transfer, water flow, and volume change in layers of kaolinite, illite and smectite clays within a large-scale oedometer with a prefabricated thermal drain embedded at the center. Thermally induced excess pore water pressures and a slight initial expansion was observed for clay layers with lower hydraulic conductivity. However, the overall volume change resulted in contraction where the rate as well as the magnitude of settlement was greater for a thermal PVD compared to a conventional PVD. A further analysis of kaolinite layers with different initial porosities indicated that the increase in the magnitude of settlement observed when using a thermal PVD was independent of the hydraulic conductivity of the clay whereas the increase in the rate of settlement was more pronounced for clays with lower hydraulic conductivity. 
    more » « less
  4. β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3. 
    more » « less
  5. null (Ed.)
    Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns. 
    more » « less