skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automation for the artisanal economy: enhancing the economic and environmental sustainability of crafting professions with human–machine collaboration
Artificial intelligence (AI) is poised to eliminate millions of jobs, from finance to truck driving. But artisanal products (e.g., handmade textiles) are valued precisely because of their human origins, and thus have some inherent “immunity” from AI job loss. At the same time, artisanal labor, combined with technology, could potentially help to democratize the economy, allowing independent, small-scale businesses to flourish. Could AI, robotics and related automation technologies enhance the economic viability and environmental sustainability of these beloved crafting professions, perhaps even expanding their niche to replace some job loss in other sectors? In this paper, we compare the problems created by the current mass production economy and potential solutions from an artisanal economy. In doing so, the paper details the possibilities of utilizing AI to support hybrid forms of human–machine production at the microscale; localized and sustainable value chains at the mesoscale; and networks of these localized and sustainable producers at the macroscale. In short, a wide range of automation technologies are potentially available for facilitating and empowering an artisanal economy. Ultimately, it is our hope that this paper will facilitate a discussion on a future vision for more “generative” economic forms in which labor value, ecological value and social value can circulate without extraction or alienation.  more » « less
Award ID(s):
1930072
PAR ID:
10182333
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
AI & SOCIETY
ISSN:
0951-5666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Latin roots of the word reparations are “re” (again) plus “parere” which means “to give birth to, bring into being, produce”. Together they mean “to make generative once again”. In this sense, the extraction processes that cause labor injustice, ecological devastation, and social degradation cannot be repaired by simply transferring money. Reparations need to take on the full sense of “restorative”: the transition to a decolonial system that can support value generators in the control of their own systems of production, protect the value they create from extraction, and circulate value in unalienated forms that benefit the human and non-human communities that produced that value. With funding from the National Science Foundation, we have developed a research framework for this process that starts with “artisanal labor”: employee-owned business and worker collectives that have people doing what they love, despite low incomes. Focusing primarily on Detroit's Black-owned urban farms, artisanal textile businesses, Black hair salons, worker collectives, and other community-based production, with additional connections to Indigenous and other communities, we have introduced digital fabrication technologies, sensors, artificial intelligence, server-side apps and other computational support for a transition to unalienated circular value flow. We will report on our investigations with the challenges at multiple scales. At each level, we show how computational supports can act as restorative mechanisms for lost circular value flows, and thus address both past and ongoing disenfranchisement. 
    more » « less
  2. Extractive economies pull value from a system without restoring it. Unsustainable extraction of ecological value includes over-fishing, clear-cut logging, etc. Extraction of labor value is similarly objectionable: assembly line jobs for example increase the likelihood of cardiovascular disease, depression, suicide and other problems. Extraction of social value-vacuuming up online personal information, commodification of the public sphere, and so on-constitutes a third form. But all three domains-ecological value, labor value, and social value-can thrive in unalienated forms if we can create a future of work that replaces extraction with generative cycles. AI is a key technology in developing these alternative economic forms. This paper describes some initial experiments with African, African American, and Native American artisans who were willing to experiment with the introduction of computational enhancements to their work. Following our report on these initial results, we map out a vision for how AI could scale up labor that sustains "heritage algorithms", ecologically situated value chains and other hybrid forms that prevent value alienation while flourishing from its robust circulation. 
    more » « less
  3. This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20-30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor but brought limited or ambiguous effects to their employment levels. 
    more » « less
  4. This paper examines the rapid introduction of AI and automation technologies within essential industries amid the COVID-19 pandemic. Drawing on participant observation and interviews within two sites of waste labor in the United States, we consider the substantial effort performed by frontline workers who smooth the relationship between robotics and their social and material environment. Over the course of the research, we found workers engaged in continuous acts of calibration, troubleshooting, and repair required to support AI technologies over time. In interrogating these sites, we develop the concept of patchwork: human labor that occurs in the space between what AI purports to do and what it actually accomplishes. We argue that it is necessary to consider the often-undervalued frontline work that makes up for AI's shortcomings during implementation, particularly as CSCW increasingly turns to discussions of Human-AI collaboration. 
    more » « less
  5. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less