skip to main content

Title: Work in Progress: Towards an Immersive Robotics Training for the Future of Architecture, Engineering, and Construction Workforce
Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
World Conference on Engineering Education
Page Range or eLocation-ID:
1 to 4
Sponsoring Org:
National Science Foundation
More Like this
  1. Dawood, Nashwan ; Rahimian, Farzad P. ; Seyedzadeh, Saleh ; Sheikhkhoshkar, Moslem (Ed.)
    The growth in the adoption of sensing technologies in the construction industry has triggered the need for graduating construction engineering students equipped with the necessary skills for deploying the technologies. One obstacle to equipping students with these skills is the limited opportunities for hands-on learning experiences on construction sites. Inspired by opportunities offered by mixed reality, this paper presents the development of a holographic learning environment that can afford learners an experiential opportunity to acquire competencies for implementing sensing systems on construction projects. The interactive holographic learning environment is built upon the notions of competence-based and constructivist learning. The learningmore »contents of the holographic learning environment are driven by characteristics of technical competencies identified from the results of an online survey, and content analysis of industry case studies. This paper presents a competency characteristics model depicting the key sensing technologies, applications and resources needed to facilitate the design of the holographic learning environment. A demonstrative scenario of the application of a virtual laser scanner for measuring volume of stockpiles is utilized to showcase the potential of the learning environment. A taxonomic model of the operational characteristics of the virtual laser scanner represented within the holographic learning environment is also presented. This paper contributes to the body of knowledge by advancing immersive experiential learning discourses previously confined by technology. It opens a new avenue for both researchers and practitioners to further investigate the opportunities offered by mixed reality for future workforce development.« less
  2. This research work-in-progress paper investigated the application of emerging mixed reality (MR) technology in construction and engineering education. The construction industry is facing a severe shortage of skilled workforce. As the baby boomers are retiring, the younger generation, especially college students, are often criticized for their lack of professional experience and career-specific competency. To close the skills gap and accelerate the transition of college students to competent workforce, this paper proposed a new genre of learning and professional training using MR. The main promise of the MR technology resides in its ability to augment virtual contents on top of themore »physical reality to facilitate tacit knowledge learning, and simulate learning activities that traditionally can only be obtained from actual professional experience. An undergraduate wood framing lab was designed as a case study to explore how students might perform in this new learning and training environment. Specifically, the case study investigated if MR would facilitate student design comprehension and transfer such understanding into the knowledge and skills needed to build the wood structure. A randomly selected student control group was given traditional paper-based construction drawings to perform the same tasks with other student groups with various visualization technology assistance. Project performance and behavior of student groups were compared to determine if there was a significant difference between the control group and the experiment groups. A pair of pre- and post-survey on MR-intervened learning experience was also conducted to explore student perceptions towards this new genre of learning and training. The research design proposed in this work-in-progress study and its preliminary results could be a good reference and foundation to future research in this arena.« less
  3. Issa, R. (Ed.)
    The construction industry has traditionally been a labor-intensive industry. Typically, labor cost takes a significant portion of the total project cost. In spite of the good pay, there was a big gap recently between demand and supply in construction trades position. A survey shows that more than 80% of construction companies in the Midwest of US are facing workforce shortage and suffering in finding enough skilled trades people to hire. This workforce shortage is also nationwide or even worldwide in many places. Construction automation provides a potential solution to mitigate this problem by seeking to replace some of the demanding,more »repetitive, and/or dangerous construction operations with robotic automation. Currently, robots have been used in bricklaying or heavy-lifting operations in the industry, and other uses remain to be explored. In this paper, the authors proposed a feasibility breakdown structure (FBS)-based robotic system method that can be used to test the feasibility of performing target construction operations with specific robotic systems, including a top-down work breakdown structure and a bottom-up set of feasibility analysis components based on literature search and/or simulation. The proposed method was demonstrated in testing the use of a KUKA robot and a Fetch robot to perform rebar mesh construction. Results showed that the overall workflow is feasible, whereas certain limitations presented in path planning. In addition, a smooth and timely information flow from the Fetch robot sensor and computer vision-based control to the two robots for a coordinated path planning and cooperation is critical for such constructability.« less
  4. The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and inmore »aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics. The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR). In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June.« less
  5. The building industry has a major impact on the US economy and accounts for: $1 trillion in annual spending; 40% of the nation’s primary energy use; and 9 million jobs. Despite its massive impact, the industry has been criticized for poor productivity compared with other industries and billions of dollars in annual waste because of poor interoperability. Furthermore, the industry has been approaching a “labor cliff”: there are not enough new individuals entering the industry to offset the vacancies left by an aging, retiring workforce. To remain effective, this critical industry will need to do better with less. In ordermore »to prepare civil engineering students for careers in this industry, educators have aimed to replicate the processes associated with real-world projects through design/build educational activities like the Department of Energy’s (DOE) Solar Decathlon, Sacramento Municipal Utility District’s (SMUD) Tiny House Competition, and DOE’s Challenge Home Competition. These learning experiences help situate civil engineering concepts in an authentic learning environment. Unfortunately, not all universities have the financial resources necessary to fund this type of hands-on project. Technology has the potential to mitigate some of these inequities. Thus, the multi-faceted objective of this project is to: develop mixed reality (MR) technology aimed at sufficiently replicating physical design and construction learning environments to enable access to students at institutions without sufficient resources; and assess the impact of a MR-facilitated cyberlearning environment on promoting cognitive-, affective-, and skill-based learning that occurs during traditional (in-persona) design and construction activities. This research will explore a fundamental question: Can MR technology enable educators to simulate physical design and construction activities at low costs to enable students at all institutions to gain exposure to these types of hands-on learning environments? In order to address this question, we employ an iterative development approach according to Human Centered Design principles to support learning according to the Carnegie Foundation’s Three Apprenticeships Model (i.e., learning related to “Head”, “Hand”, and “Heart”). In order to achieve these aims, the research team uses MR technology (i.e., a Microsoft HoloLens®) to understand the extent to which this mode of education allows students to demonstrate knowledge similar to that which is gained through physical design and construction learning environments. This paper will presents highlights from the first year of this project.« less