Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles.
more »
« less
An inverse acoustic-elastic interaction problem with phased or phaseless far-field data
Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods.
more »
« less
- Award ID(s):
- 1912704
- PAR ID:
- 10182369
- Date Published:
- Journal Name:
- Inverse problems
- Volume:
- 36
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 035014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper addresses the challenging and interesting inverse problem of reconstructing the spatially varying dielectric constant of a medium from phaseless backscattering measurements generated by single-point illumination. The underlying mathematical model is governed by the three-dimensional Helmholtz equation, and the available data consist solely of the magnitude of the scattered wave field. To address the nonlinearity and servere ill-posedness of this phaseless inverse scattering problem, we introduce a robust, globally convergent numerical framework combining several key regularization strategies. Our method first employs a phase retrieval step based on the Wentzel--Kramers--Brillouin (WKB) ansatz, where the lost phase information is reconstructed by solving a nonlinear optimization problem. Subsequently, we implement a Fourier-based dimension reduction technique, transforming the original problem into a more stable system of elliptic equations with Cauchy boundary conditions. To solve this resulting system reliably, we apply the Carleman convexification approach, constructing a strictly convex weighted cost functional whose global minimizer provides an accurate approximation of the true solution. Numerical simulations using synthetic data with high noise levels demonstrate the effectiveness and robustness of the proposed method, confirming its capability to accurately recover both the geometric location and contrast of hidden scatterers.more » « less
-
Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball.more » « less
-
The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and containing multiple stiff prestressed arcs located on the same circle is considered. The boundary conditions for the arcs are described by those of either Gurtin–Murdoch or Steigmann–Ogden theories in which the arcs are endowed with their own elastic energies. The material parameters for each arc can in general be different. The problem is reduced to the system of real variables hypersingular boundary integral equations in terms of two scalar unknowns expressed via the components of the stress tensors of the arcs. The unknowns are approximated by the series of trigonometric functions that are multiplied by the square root weight functions to allow for automatic incorporation of the tip conditions. The coefficients in series are found from the system of linear algebraic equations that are solved using the collocation method. The expressions for the stress intensity factors are derived and numerical examples are presented to illustrate the influence of governing dimensionless parameters.more » « less
-
In this work, we develop numerical methods to solve forward and inverse wave problems for a nonlinear Helmholtz equation defined in a spherical shell between two concentric spheres centred at the origin. A spectral method is developed to solve the forward problem while a combination of a finite difference approximation and the least squares method are derived for the inverse problem. Numerical examples are given to verify the method. ReferencesR. Askey. Orthogonal polynomials and special functions. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1975. doi: 10.1137/1.9781611970470G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension. Nonlinear Photonics. Optica Publishing Group, 2007. doi: 10.1364/np.2007.ntha6G. Fibich and S. Tsynkov. High-Order Two-Way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering. J. Comput. Phys. 171 (2001), pp. 632–677. doi: 10.1006/jcph.2001.6800G. Fibich and S. Tsynkov. Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions. J. Comput. Phys. 210 (2005), pp. 183–224. doi: 10.1016/j.jcp.2005.04.015P. M. Morse and K. U. Ingard. Theoretical Acoustics. International Series in Pure and Applied Physics. McGraw-Hill Book Company, 1968G. N. Watson. A treatise on the theory of Bessel functions. International Series in Pure and Applied Physics. Cambridge Mathematical Library, 1996. url: https://www.cambridge.org/au/universitypress/subjects/mathematics/real-and-complex-analysis/treatise-theory-bessel-functions-2nd-edition-1?format=PB&isbn=9780521483919more » « less
An official website of the United States government

