skip to main content


Title: An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion
This paper is concerned with the mathematical analysis of an inverse random source problem for the time fractional diffusion equation, where the source is driven by a fractional Brownian motion. Given the random source, the direct problem is to study the stochastic time fractional diffusion equation. The inverse problem is to determine the statistical properties of the source from the expectation and variance of the final time data. For the direct problem, we show that it is well-posed and has a unique mild solution under a certain condition. For the inverse problem, the uniqueness is proved and the instability is characterized. The major ingredients of the analysis are based on the properties of the Mittag–Leffler function and the stochastic integrals associated with the fractional Brownian motion.  more » « less
Award ID(s):
1912704
NSF-PAR ID:
10182370
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inverse problems
Volume:
36
ISSN:
0266-5611
Page Range / eLocation ID:
045008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The stochastic trajectories of molecules in living cells, as well as the dynamics in many other complex systems, often exhibit memory in their path over long periods of time. In addition, these systems can show dynamic heterogeneities due to which the motion changes along the trajectories. Such effects manifest themselves as spatiotemporal correlations. Despite the broad occurrence of heterogeneous complex systems in nature, their analysis is still quite poorly understood and tools to model them are largely missing. We contribute to tackling this problem by employing an integral representation of Mandelbrot’s fractional Brownian motion that is compliant with varying motion parameters while maintaining long memory. Two types of switching fractional Brownian motion are analysed, with transitions arising from a Markovian stochastic process and scale-free intermittent processes. We obtain simple formulas for classical statistics of the processes, namely the mean squared displacement and the power spectral density. Further, a method to identify switching fractional Brownian motion based on the distribution of displacements is described. A validation of the model is given for experimental measurements of the motion of quantum dots in the cytoplasm of live mammalian cells that were obtained by single-particle tracking.

     
    more » « less
  2. In vertebrate brains, virtually all neural circuits operate inside a dense matrix of axons (fibers) that have a strongly stochastic character. These fibers originate in the brainstem raphe region, produce highly tortuous trajectories, and release serotonin (5-hydroxytryptamine, 5-HT), with other neurotransmitters. They can robustly regenerate in the adult mammalian brain and appear to support neuroplasticity [1], with implications for mental disorders [2] and artificial neural networks [3]. The self-organization of this “serotonergic” matrix remains poorly understood. In our previous study, we have shown that serotonergic fibers can be modeled as paths of fractional Brownian motion (FBM), a continuous-time stochastic process. FBM is parametrized by the Hurst index, which defines three distinctive regimes: subdiffusion (H < 0.5), normal diffusion (H = 0.5), and superdiffusion (H > 0.5). In two-dimensional (2D) shapes based on the adult mouse brain, simulated FBM-fibers (with H = 0.8) have produced regional distributions similar to those of the actual serotonergic fibers [4]. However, increments of superdiffusive FBM trajectories have long-range positive correlations, which implies that a fiber path in one 2D-section depends on its history in other sections. In a major extension of this study, we used a supercomputing simulation to generate 960 fibers in a complex, three-dimensional shape based on the late-embryonic mouse brain (at embryonic day 17.5). The fibers were modeled as paths of reflected FBM with H = 0.8. The reflection was caused by natural neuroanatomical borders such as the pia and ventricles. The resultant regional densities were compared to the actual fiber densities in the corresponding neuroanatomically-defined regions, based on a recently published comprehensive map [5]. The relative simulated densities showed strong similarities to the actual densities in the telencephalon, diencephalon, and mesencephalon. The current simulation does not include tissue heterogeneities, but it can be further improved with novel models of multifractional FBM, such as the one introduced by our group [6]. The study demonstrates that serotonergic fiber densities can be strongly influenced by the geometry of the brain, with implications for neurodevelopment, neuroplasticity, and brain evolution. Acknowledgements: This research was funded by an NSF-BMBF CRCNS grant (NSF #2112862 to SJ & TV; BMBF #STAXS to RM). References: 1. Lesch KP, Waider J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron. 2012, 76, 175-191. 2. Daws RE, Timmermann C, Giribaldi B, et al. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 2022, 28, 844-851. 3. Lee C, Zhang Z, Janušonis S. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks. Front. Neurosci. 2022, 16, 949934. 4. Janušonis S, Detering N, Metzler R, Vojta T. Serotonergic axons as fractional Brownian motion paths: Insights Into the self-organization of regional densities. Front. Comput. Neurosci. 2020, 14, 56. 5. Awasthi JR, Tamada K, Overton ETN, Takumi T. Comprehensive topographical map of the serotonergic fibers in the male mouse brain. J. Comp. Neurol. 2021, 529, 1391-1429. 6. Wang W, Balcerek M, Burnecki K, et al. Memory-multi-fractional Brownian motion with continuous correlation. arXiv. 2023, 2303.01551. 
    more » « less
  3. We study the paraxial wave equation with a randomly perturbed index of refraction, which can model the propagation of a wave beam in a turbulent medium. The random perturbation is a stationary and isotropic process with a general form of the covariance that may or may not be integrable. We focus attention mostly on the nonintegrable case, which corresponds to a random perturbation with long-range correlations, that is, relevant for propagation through a cloudy turbulent atmosphere. The analysis is carried out in a high-frequency regime where the forward scattering approximation holds. It reveals that the randomization of the wave field is multiscale: The travel time of the wave front is randomized at short distances of propagation, and it can be described by a fractional Brownian motion. The wave field observed in the random travel time frame is affected by the random perturbations at long distances, and it is described by a Schr\"odinger-type equation driven by a standard Brownian field. We use these results to quantify how scattering leads to decorrelation of the spatial and spectral components of the wave field and to a deformation of the pulse emitted by the source. These are important questions for applications, such as imaging and free space communications with pulsed laser beams through a turbulent atmosphere. We also compare the results with those used in the optics literature, which are based on the Kolmogorov model of turbulence. We show explicitly that the commonly used approximations for the decorrelation of spatial and spectral components are appropriate for the Kolmogorov model but fail for models with long-range correlations. 
    more » « less
  4. Stochastic processes exhibiting power-law slopes in the frequency domain are frequently well modeled by fractional Brownian motion (fBm), with the spectral slope at high frequencies being associated with the degree of small-scale roughness or fractal dimension. However, a broad class of real-world signals have a high-frequency slope, like fBm, but a plateau in the vicinity of zero frequency. This low-frequency plateau, it is shown, implies that the temporal integral of the process exhibits diffusive behavior, dispersing from its initial location at a constant rate. Such processes are not well modeled by fBm, which has a singularity at zero frequency corresponding to an unbounded rate of dispersion. A more appropriate stochastic model is a much lesser-known random process called the Matérn process, which is shown herein to be a damped version of fractional Brownian motion. This article first provides a thorough introduction to fractional Brownian motion, then examines the details of the Matérn process and its relationship to fBm. An algorithm for the simulation of the Matérn process in O(NlogN) operations is given. Unlike fBm, the Matérn process is found to provide an excellent match to modeling velocities from particle trajectories in an application to two-dimensional fluid turbulence. 
    more » « less
  5. Abstract

    This paper establishes explicit solutions for fractional diffusion problems on bounded domains. It also gives stochastic solutions, in terms of Markov processes time‐changed by an inverse stable subordinator whose index equals the order of the fractional time derivative. Some applications are given, to demonstrate how to specify a well‐posed Dirichlet problem for space‐time fractional diffusions in one or several variables. This solves an open problem in numerical analysis.

     
    more » « less