skip to main content

Title: Trace Element Patterns in Otoliths: The Role of Biomineralization
Otolith chemistry has gained increasing attention as a tool for analyzing various aspects of fish biology, such as stock dynamics, migration patterns, hypoxia and pollution exposure, and connectivity between habitats. While these studies often assume otolith elemental concentrations reflect environmental conditions, physiological processes are increasingly recognized as a modulating and/or controlling factor. In particular, biomineralization—the complex, enzyme-regulated construction of CaCO3 crystals scaffolded by proteins—is believed to play a critical role in governing otolith chemical patterns. This review aims to summarize the knowledge on otolith composition and biophysical drivers of biomineralization, present hypotheses on how biomineralization should affect element incorporation, and test the validity thereof with selected case studies. Tracers of environmental history are assumed to be dominated by elements that substitute for Ca during crystal growth or that occur randomly trapped within the crystal lattice. Strontium (Sr) and barium (Ba) largely comply with the biomineralization-based hypotheses that otolith element patterns reflect environmental concentrations, without additional effects of salinity, but can be influenced by physiological processes, typically exhibiting decreasing incorporation with increasing growth. Conversely, tracers of physiology are assumed to be elements under physiological control and primarily occur protein-bound in the otolith’s organic matrix. Physiological tracers are hypothesized to reflect feeding rate and/or growth, decrease with fish age, and exhibit minimal influence of environmental concentration. The candidate elements more » phosphorus (P), copper (Cu) and zinc (Zn) confirm these hypotheses. Magnesium (Mg) is believed to be randomly trapped in the crystal structure and hence a candidate for environmental reconstruction, but the response to all examined drivers suggest Mg to be coupled to growth. Manganese (Mn) substitutes for Ca, but is also a co-factor in matrix proteins, and therefore exhibits otolith patterns reflecting both environmental (concentration and salinity) and physiological (ontogeny and growth) histories. A consistent temperature response was not evident across studies for either environmental or physiological tracers, presumably attributable to variable relationships between temperature and fish behavior and physiology (e.g., feeding rate, reproduction). Biomineralization thus has a controlling effect on otolith element concentrations for elements that are linked with somatic growth, but not for elements that substitute for Ca in the crystal lattice. Interpretation of the ecological significance of patterns from field samples therefore needs to consider the impact of the underlying biomineralization processes of the element in question as well as physiological processes regulating the availability of ions for inclusion in the growing crystal lattice. Such understanding will enhance the utility of this technique to address fisheries management questions. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Reviews in Fisheries Science & Aquaculture
Page Range or eLocation-ID:
1 to 33
Sponsoring Org:
National Science Foundation
More Like this
  1. Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua ), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitatsmore »with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod.« less
  2. Deoxygenation worldwide is increasing in aquatic systems with implications for organisms' biology, communities and ecosystems. Eastern Baltic cod has experienced a strong decline in mean body condition (i.e. weight at a specific length) over the past 20 years with effects on the fishery relying on this resource. The decrease in cod condition has been tentatively linked in the literature to increased hypoxic areas potentially affecting habitat range, but also to benthic prey and/or cod physiology directly. To date, no studies have been performed to test these mechanisms. Using otolith trace element microchemistry and hypoxia-responding metrics based on manganese (Mn) andmore »magnesium (Mg), we investigated the relationship between fish body condition at capture and exposure to hypoxia. Cod individuals collected after 2000 with low body condition had a higher level of Mn/Mg in the last year of life, indicating higher exposure to hypoxic waters than cod with high body condition. Moreover, lifetime exposure to hypoxia was even more strongly correlated to body condition, suggesting that condition may reflect long-term hypoxia status. These results were irrespective of fish age or sex. This implies that as Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they compromise their own performance. This study specifically sheds light on the mechanisms leading to the low condition of cod and generally points to the impact of deoxygenation on ecosystems and fisheries.« less
  3. Hughes, Kelly T. (Ed.)
    ABSTRACT Bacterial growth under nutrient-rich and starvation conditions is intrinsically tied to the environmental history and physiological state of the population. While high-throughput technologies have enabled rapid analyses of mutant libraries, technical and biological challenges complicate data collection and interpretation. Here, we present a framework for the execution and analysis of growth measurements with improved accuracy over that of standard approaches. Using this framework, we demonstrate key biological insights that emerge from consideration of culturing conditions and history. We determined that quantification of the background absorbance in each well of a multiwell plate is critical for accurate measurements of maximalmore »growth rate. Using mathematical modeling, we demonstrated that maximal growth rate is dependent on initial cell density, which distorts comparisons across strains with variable lag properties. We established a multiple-passage protocol that alleviates the substantial effects of glycerol on growth in carbon-poor media, and we tracked growth rate-mediated fitness increases observed during a long-term evolution of Escherichia coli in low glucose concentrations. Finally, we showed that growth of Bacillus subtilis in the presence of glycerol induces a long lag in the next passage due to inhibition of a large fraction of the population. Transposon mutagenesis linked this phenotype to the incorporation of glycerol into lipoteichoic acids, revealing a new role for these envelope components in resuming growth after starvation. Together, our investigations underscore the complex physiology of bacteria during bulk passaging and the importance of robust strategies to understand and quantify growth. IMPORTANCE How starved bacteria adapt and multiply under replete nutrient conditions is intimately linked to their history of previous growth, their physiological state, and the surrounding environment. While automated equipment has enabled high-throughput growth measurements, data interpretation and knowledge gaps regarding the determinants of growth kinetics complicate comparisons between strains. Here, we present a framework for growth measurements that improves accuracy and attenuates the effects of growth history. We determined that background absorbance quantification and multiple passaging cycles allow for accurate growth rate measurements even in carbon-poor media, which we used to reveal growth-rate increases during long-term laboratory evolution of Escherichia coli . Using mathematical modeling, we showed that maximum growth rate depends on initial cell density. Finally, we demonstrated that growth of Bacillus subtilis with glycerol inhibits the future growth of most of the population, due to lipoteichoic acid synthesis. These studies highlight the challenges of accurate quantification of bacterial growth behaviors.« less
  4. Throughout the course of an organism’s life, the chemical signatures of environment, food consumption, and weather are recorded into their carbonate structures; these signatures can be directly linked to a time-resolved lifespan. Here we present trace element data from benthic foraminifera and tropical molluscs determined using an ESI NWR193UC excimer laser coupled with an Agilent 8900 triple quadrupole mass spectrometer in the MicroAnalytical Geochemistry and Isotope Characterization (MAGIC) Laboratory at the University of Maine. Benthic foraminifera are protists that live on the sea floor and produce calcite shells, progressively adding chambers. Changes in Mg/Ca in foraminifera are used as amore »proxy for ocean temperature. Laser ablation ICP-MS data for 18 trace elements were collected in individual growth chambers in foraminifera of the genus Uvigerina from the Bay of Plenty. Line scans were performed within thin (~10 µm) chamber walls using a spot size of 8 µm, beam energy density of 3 J/cm2, repetition rate of 12 Hz, and scan speeds of 2-3 µm/s. Concentrations were determined relative to the NIST610 glass. Ratios of Mg/Ca and other trace elements record the same range of values as those determined via bulk wet chemistry analysis of ~10 foraminifera for a given population, which suggests that LA-ICP-MS may be a viable alternative to wet chemistry. Trace element data were collected across shells of the warm-tropical mollusc species Chione subrugosa from the Ostra Base Camp area, Peru (78°37’22”W, 8°54’46”S). Previous studies of the area have suggested that a large climate transition occurred, transforming a warm water tropical bay into a desert surrounded by a coastal stand with cool waters. This area was occupied by humans at 6250-5450 radiocarbon years BP. This study examines Chione subrugosa, which were found in the living position at the fossilized Ostra Beach and are thought to have been the final living warm-tropical molluscs in the bay. Studies of modern molluscs have revealed that molluscs record massive climatic changes, such as El Niño, in their chemistry. Laser ablation provides a unique opportunity to examine chemical changes directly related to the changing coastal environment. Line scans transverse growth bands along the length of the shell, providing a high resolution record of daily variation in trace element chemistry over the lifespan of the mollusc. Eleven elements were analysed with a beam energy density of 2.4 J/cm2, repetition rate of 15 Hz, spot size of 5 x 25 µm, and a scan speed of 5 µm/s. Preliminary data suggest the preservation of yearly oscillations in trace elements, with high concentrations of La, Ce, U, and Pb during early shell growth. Continued study will examine catastrophic mollusc life events in an effort to link these with environmental climate changes over daily timescales.« less
  5. Ocean acidification, the ongoing decline of surface ocean pH and [CO32-] due to absorption of surplus atmospheric CO2, has far-reaching consequences for marine biota, especially calcifiers. Among these are teleost fishes, which internally calcify otoliths, critical elements of the inner ear and vestibular system. There is evidence in the literature that ocean acidification increases otolith size and alters shape, perhaps impacting otic mechanics and thus sensory perception. However, existing analyses of otolith morphological responses to ocean acidification are limited to 2-dimensional morphometrics and shape analysis. Here, we reared larval Clark’s anemonefish, Amphiprion clarkii (Bennett, 1830), in various seawater pH treatmentsmore »analogous to future ocean scenarios in a 3x-replicated experimental design. Upon settlement, we removed all otoliths from each individual fish and analyzed them for treatment effects on morphometrics including area, perimeter, and circularity; further, we used scanning electron microscopy to screen otoliths visually for evidence of treatment effects on lateral development, surface roughness, and vaterite replacement. Our results corroborate those of other experiments with other taxa that observed otolith growth with elevated pCO2, and provide evidence that lateral development and surface roughness increased as well; we observed at least one of these effects in all otolith types. Finally, we review previous work investigating ocean acidification impacts on otolith morphology and hypotheses concerning function, placing our observations in context. These impacts may have consequences teleost fitness in the near-future ocean« less