skip to main content

Title: Analyzing autoencoder-based acoustic word embeddings
Recent studies have introduced methods for learning acoustic word embeddings (AWEs)—fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only been evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words’ absolute duration and speaker. At the same time, the representation space of these AWEs is organized such that the distance between words’ embeddings increases with those words’ phonetic dissimilarity. Finally, the AWEs exhibit a word onset bias, similar to patterns reported in various studies on human speech processing and lexical access. We argue this is a promising result and encourage further evaluation of AWEs as a potentially useful tool in cognitive science, which could provide a link between speech processing and lexical memory.
Authors:
; ;
Award ID(s):
1734245
Publication Date:
NSF-PAR ID:
10182737
Journal Name:
ICLR Workshop on Bridging AI and Cognitive Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct acoustics-to-word (A2W) systems for end-to-end automatic speech recognition are simpler to train, and more efficient to decode with, than sub-word systems. However, A2W systems can have difficulties at training time when data is limited, and at decoding time when recognizing words outside the training vocabulary. To address these shortcomings, we investigate the use of recently proposed acoustic and acoustically grounded word embedding techniques in A2W systems. The idea is based on treating the final pre-softmax weight matrix of an AWE recognizer as a matrix of word embedding vectors, and using an externally trained set of word embeddings to improvemore »the quality of this matrix. In particular we introduce two ideas: (1) Enforcing similarity at training time between the external embeddings and the recognizer weights, and (2) using the word embeddings at test time for predicting out-of-vocabulary words. Our word embedding model is acoustically grounded, that is it is learned jointly with acoustic embeddings so as to encode the words’ acoustic-phonetic content; and it is parametric, so that it can embed any arbitrary (potentially out-of-vocabulary) sequence of characters. We find that both techniques improve the performance of an A2W recognizer on conversational telephone speech.« less
  2. Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word ("acoustic-to-word") speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, wemore »investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.« less
  3. Previous research suggests that individuals with weaker receptive language show increased reliance on lexical information for speech perception relative to individuals with stronger receptive language, which may reflect a difference in how acoustic-phonetic and lexical cues are weighted for speech processing. Here we examined whether this relationship is the consequence of conflict between acoustic-phonetic and lexical cues in speech input, which has been found to mediate lexical reliance in sentential contexts. Two groups of participants completed standardized measures of language ability and a phonetic identification task to assess lexical recruitment (i.e., a Ganong task). In the high conflict group, themore »stimulus input distribution removed natural correlations between acoustic-phonetic and lexical cues, thus placing the two cues in high competition with each other; in the low conflict group, these correlations were present and thus competition was reduced as in natural speech. The results showed that 1) the Ganong effect was larger in the low compared to the high conflict condition in single-word contexts, suggesting that cue conflict dynamically influences online speech perception, 2) the Ganong effect was larger for those with weaker compared to stronger receptive language, and 3) the relationship between the Ganong effect and receptive language was not mediated by the degree to which acoustic-phonetic and lexical cues conflicted in the input. These results suggest that listeners with weaker language ability down-weight acoustic-phonetic cues and rely more heavily on lexical knowledge, even when stimulus input distributions reflect characteristics of natural speech input.« less
  4. Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and appendmore »it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks.« less
  5. People who grow up speaking a language without lexical tones typically find it difficult to master tonal languages after childhood. Accumulating research suggests that much of the challenge for these second language (L2) speakers has to do not with identification of the tones themselves, but with the bindings between tones and lexical units. The question that remains open is how much of these lexical binding problems are problems of encoding (incomplete knowledge of the tone-to-word relations) vs. retrieval (failure to access those relations in online processing). While recent work using lexical decision tasks suggests that both may play a role,more »one issue is that failure on a lexical decision task may reflect a lack of learner confidence about what is not a word, rather than non-native representation or processing of known words. Here we provide complementary evidence using a picture- phonology matching paradigm in Mandarin in which participants decide whether or not a spoken target matches a specific image, with concurrent event-related potential (ERP) recording to provide potential insight into differences in L1 and L2 tone processing strategies. As in the lexical decision case, we find that advanced L2 learners show a clear disadvantage in accurately identifying tone mismatched targets relative to vowel mismatched targets. We explore the contribution of incomplete/uncertain lexical knowledge to this performance disadvantage by examining individual data from an explicit tone knowledge post-test. Results suggest that explicit tone word knowledge and confidence explains some but not all of the errors in picture-phonology matching. Analysis of ERPs from correct trials shows some differences in the strength of L1 and L2 responses, but does not provide clear evidence toward differences in processing that could explain the L2 disadvantage for tones. In sum, these results converge with previous evidence from lexical decision tasks in showing that advanced L2 listeners continue to have difficulties with lexical tone recognition, and in suggesting that these difficulties reflect problems both in encoding lexical tone knowledge and in retrieving that knowledge in real time.« less