skip to main content


Title: Whole-Word Segmental Speech Recognition with Acoustic Word Embeddings
Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word ("acoustic-to-word") speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.  more » « less
Award ID(s):
1816627
NSF-PAR ID:
10304074
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Workshop on Spoken Language Technology
ISSN:
2639-5479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new unsupervised model for mapping a variable-duration speech segment to a fixed-dimensional representation. The resulting acoustic word embeddings can form the basis of search, discovery, and indexing systems for low- and zero-resource languages. Our model, which we refer to as a maximal sampling correspondence variational autoencoder (MCVAE), is a recurrent neural network (RNN) trained with a novel self-supervised correspondence loss that encourages consistency between embeddings of different instances of the same word. Our training scheme improves on previous correspondence training approaches through the use and comparison of multiple samples from the approximate posterior distribution. In the zero-resource setting, the MCVAE can be trained in an unsupervised way, without any ground-truth word pairs, by using the word-like segments discovered via an unsupervised term discovery system. In both this setting and a semi-supervised low-resource setting (with a limited set of ground-truth word pairs), the MCVAE outperforms previous state-of-the-art models, such as Siamese-, CAE- and VAE-based RNNs. 
    more » « less
  2. Direct acoustics-to-word (A2W) systems for end-to-end automatic speech recognition are simpler to train, and more efficient to decode with, than sub-word systems. However, A2W systems can have difficulties at training time when data is limited, and at decoding time when recognizing words outside the training vocabulary. To address these shortcomings, we investigate the use of recently proposed acoustic and acoustically grounded word embedding techniques in A2W systems. The idea is based on treating the final pre-softmax weight matrix of an AWE recognizer as a matrix of word embedding vectors, and using an externally trained set of word embeddings to improve the quality of this matrix. In particular we introduce two ideas: (1) Enforcing similarity at training time between the external embeddings and the recognizer weights, and (2) using the word embeddings at test time for predicting out-of-vocabulary words. Our word embedding model is acoustically grounded, that is it is learned jointly with acoustic embeddings so as to encode the words’ acoustic-phonetic content; and it is parametric, so that it can embed any arbitrary (potentially out-of-vocabulary) sequence of characters. We find that both techniques improve the performance of an A2W recognizer on conversational telephone speech. 
    more » « less
  3. Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. In settings where unlabelled speech is the only available resource, such embeddings can be used in "zero-resource" speech search, indexing and discovery systems. Here we propose to train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zero-resource languages. For this transfer learning approach, we consider two multilingual recurrent neural network models: a discriminative classifier trained on the joint vocabularies of all training languages, and a correspondence autoencoder trained to reconstruct word pairs. We test these using a word discrimination task on six target zero-resource languages. When trained on seven well-resourced languages, both models perform similarly and outperform unsupervised models trained on the zero-resource languages. With just a single training language, the second model works better, but performance depends more on the particular training--testing language pair. 
    more » « less
  4. Social media is the ultimate challenge for many natural language processing tools. The constant emergence of linguistic constructs challenge even the most sophisticated NLP tools. Predicting word embeddings for out of vocabulary words is one of those challenges. Word embedding models only include terms that occur a sufficient number of times in their training corpora. Word embedding vector models are unable to directly provide any useful information about a word not in their vocabularies. We propose a fast method for predicting vectors for out of vocabulary terms that makes use of the surrounding terms of the unknown term and the hidden context layer of the word2vec model. We propose this method as a strong baseline in the sense that 1) while it does not surpass all state-of-the-art methods, it surpasses several techniques for vector prediction on benchmark tasks, 2) even when it underperforms, the margin is very small retaining competitive performance in downstream tasks, and 3) it is inexpensive to compute, requiring no additional training stage. We also show that our technique can be incorporated into existing methods to achieve a new state-of-the-art on the word vector prediction problem. 
    more » « less
  5. Recent studies have introduced methods for learning acoustic word embeddings (AWEs)—fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only been evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words’ absolute duration and speaker. At the same time, the representation space of these AWEs is organized such that the distance between words’ embeddings increases with those words’ phonetic dissimilarity. Finally, the AWEs exhibit a word onset bias, similar to patterns reported in various studies on human speech processing and lexical access. We argue this is a promising result and encourage further evaluation of AWEs as a potentially useful tool in cognitive science, which could provide a link between speech processing and lexical memory. 
    more » « less