skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene
The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.  more » « less
Award ID(s):
1757371
PAR ID:
10182903
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nano Research
ISSN:
1998-0124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs. 
    more » « less
  2. Abstract Due to their diverse potential in advanced electronics and energy technologies, electrically conducting metal‐organic frameworks (MOFs) are drawing significant attention. Although hexagonal 2D MOFs generally display impressive electrical conductivity because of their dual in‐plane (through bonds) and out‐of‐plane (through π‐stacked ligands) charge transport pathways, notable differences between these two orthogonal conduction routes cause anisotropic conductivity and lower bulk conductivity. To address this issue, we have developed the first redox‐complementary dual‐ligand 2D MOF Cu3(HHTP)(HHTQ), featuring a π‐donor hexahydroxytriphenylene (HHTP) ligand and a π‐acceptor hexahydroxytricycloquinazoline (HHTQ) ligand located at alternate corners of the hexagons, which form either parallel HHTP and HHTQ stacks (AA stacking) or alternating HHTP/HHTQ stacks (AB stacking) along the c‐axis. Regardless of the stacking pattern, Cu3(HHTP)(HHTQ) supports more effective out‐of‐plane conduction through either separate π‐donor and π‐acceptor stacks or alternating π‐donor/acceptor stacks, while promoting in‐plane conduction through the pushpull‐like heteroleptic coordination network. As a result, Cu3(HHTP)(HHTQ) exhibits higher bulk conductivity (0.12 S/m at 295 K) than single‐ligand MOFs Cu3(HHTP)2(7.3 × 10−2S/m) and Cu3(HHTQ)2(5.9 × 10−4S/m). This work introduces a new design approach to improve the bulk electrical conductivity of 2D MOFs by supporting charge transport in both in‐ and out‐of‐plane direcations. 
    more » « less
  3. Here, we report an air-free approach to infiltrate isostructural metal–organic frameworks (MOFs), M-MOF-74 (M = Cu, Mn, Zn, Mg), with conjugated acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ). The TCNQ@M-MOF-74 compounds exhibit a striking correlation between their bulk conductivities and the open d shell variants (Cu, Mn), arising from TCNQ p-doping of the MOFs. Importantly, conjugation of the guest molecule is a prerequisite for inducing electrical conductivity in these systems. 
    more » « less
  4. Novel columnar lanthanide metal–organic frameworks (Ln-MOFs) based on a butterfly-shaped electron-rich π-extended tetrathia-fulvalene ligand (ExTTFTB) were synthesized and their electronic properties were investigated. Upon iodine-induced ligand oxidation, the Tb-MOF displayed ca. 100-fold higher electrical conductivity (5 × 10 −7 S m −1 ) than the neutral pristine MOF. 
    more » « less
  5. Metal-organic frameworks (MOFs) with tunable structures and unique host-guest chemistry have emerged as promising candidates for conductive materials. However, the tunability of conductivity and porosity in conductive MOFs and their interrelationship still lack a systematic study. Herein, we report the synthesis of a series of 3D copper MOFs (NU-4000 to NU-4003) using a triphenylene-based hexatopic carboxylate linker. By modulating the ratio of mixed solvents, distinct structural topologies and π-π stacking arrangements were achieved, resulting in electrical conductivity ranging from insulators (˂ 10-6 S/cm) to semiconductors (10-8 ~ 102 S/cm). Among them, NU-4003 features continuous π-π stacking and exhibits a conductivity of 1.7 × 10-6 S/cm. To further enhance conductivity, we encapsulated C60, a strong electron acceptor, within the circular channels of NU-4003, resulting in a remarkable conductivity increase to 140 S/cm with approximately 100% pore occupancy. Even at lower C60 loadings that leave 54% of the pore volume remaining accessible, the conductivity remains exceptionally high at 104 S/cm. This represents an eight-order magnitude enhancement and positions NU-4003-C60 as one of the most conductive 3D MOFs reported to date. This work integrates two charge transport pathways (through-space and electron donor and acceptor) into a single MOF host-guest material, achieving a significant enhancement in conductivity. This study demonstrates the potential of combining host-guest chemistry and π-π stacking to design conductive MOFs with permanent porosity maintained, providing a blueprint for the development of next-generation materials for electronic and energy-related applications. 
    more » « less