skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands
Award ID(s):
1513007
PAR ID:
10182955
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
141
Issue:
50
ISSN:
0002-7863
Page Range / eLocation ID:
19585 to 19588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using fully-kinetic plasma simulations, we study the non-resonant (Bell) streaming instability driven by energetic leptons. We identify the necessary conditions to drive it and the differences from the standard proton-driven case in both linear and saturated stages. A simple analytic theory is presented to explain simulations. Our findings are crucial for understanding the phenomenology of astrophysical environments where only electrons may be accelerated (e.g., oblique shocks) or where relativistic pairs are produced (e.g., around pulsar wind nebulae). 
    more » « less
  2. Ziemelis, Karl (Ed.)
    Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires [1]. However, experimental efforts thus far suggest only very limited SPhP contributions [2-5]. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can significantly enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is over two orders of magnitude higher than the Landauer limit predicted based on equilibrium Bose-Einstein distributions. We attribute the remarkable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids via introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices. 
    more » « less