skip to main content


Title: Triplet Fingerprinting: More Practical and Portable Website Fingerprinting with N-shot Learning
Website Fingerprinting (WF) attacks pose a serious threat to users' online privacy, including for users of the Tor anonymity system. By exploiting recent advances in deep learning, WF attacks like Deep Fingerprinting (DF) have reached up to 98% accuracy. The DF attack, however, requires large amounts of training data that needs to be updated regularly, making it less practical for the weaker attacker model typically assumed in WF. Moreover, research on WF attacks has been criticized for not demonstrating attack effectiveness under more realistic and more challenging scenarios. Most research on WF attacks assumes that the testing and training data have similar distributions and are collected from the same type of network at about the same time. In this paper, we examine how an attacker could leverage N-shot learning---a machine learning technique requiring just a few training samples to identify a given class---to reduce the effort of gathering and training with a large WF dataset as well as mitigate the adverse effects of dealing with different network conditions. In particular, we propose a new WF attack called Triplet Fingerprinting (TF) that uses triplet networks for N-shot learning. We evaluate this attack in challenging settings such as where the training and testing data are collected multiple years apart on different networks, and we find that the TF attack remains effective in such settings with 85% accuracy or better. We also show that the TF attack is also effective in the open world and outperforms traditional transfer learning. On top of that, the attack requires only five examples to recognize a website, making it dangerous in a wide variety of scenarios where gathering and training on a complete dataset would be impractical.  more » « less
Award ID(s):
1816851
NSF-PAR ID:
10182980
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
CCS '19: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
Page Range / eLocation ID:
1131 to 1148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site. 
    more » « less
  2. Website fingerprinting (WF) attacks allow an adversary to associate a website with the encrypted traffic patterns produced when accessing it, thus threatening to destroy the client-server unlinkability promised by anonymous communication networks. Explainable WF is an open problem in which we need to improve our understanding of (1) the machine learning models used to conduct WF attacks; and (2) the WF datasets used as inputs to those models. This paper focuses on explainable datasets; that is, we develop an alternative to the standard practice of gathering low-quality WF datasets using synthetic browsers in large networks without controlling for natural network variability. In particular, we demonstrate how network simulation can be used to produce explainable WF datasets by leveraging the simulator's high degree of control over network operation. Through a detailed investigation of the effect of network variability on WF performance, we find that: (1) training and testing WF attacks in networks with distinct levels of congestion increases the false-positive rate by as much as 200%; (2) augmenting the WF attacks by training them across several networks with varying degrees of congestion decreases the false-positive rate by as much as 83%; and (3) WF classifiers trained on completely simulated data can achieve greater than 80% accuracy when applied to the real world.

     
    more » « less
  3. Over 8 million users rely on the Tor network each day to protect their anonymity online. Unfortunately, Tor has been shown to be vulnerable to the website fingerprinting attack, which allows an attacker to deduce the website a user is visiting based on patterns in their traffic. The state-of-the-art attacks leverage deep learning to achieve high classification accuracy using raw packet information. Work thus far, however, has examined only one type of media delivered over the Tor network: web pages, and mostly just home pages of sites. In this work, we instead investigate the fingerprintability of video content served over Tor. We collected a large new dataset of network traces for 50 YouTube videos of similar length. Our preliminary experiments utilizing a convolutional neural network model proposed in prior works has yielded promising classification results, achieving up to 55% accuracy. This shows the potential to unmask the individual videos that users are viewing over Tor, creating further privacy challenges to consider when defending against website fingerprinting attacks. 
    more » « less
  4. Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses. 
    more » « less
  5. The website fingerprinting attack allows a low-resource attacker to compromise the privacy guarantees provided by privacy enhancing tools such as Tor. In response, researchers have proposed defenses aimed at confusing the classification tools used by attackers. As new, more powerful attacks are frequently developed, raw attack accuracy has proven inadequate as the sole metric used to evaluate these defenses. In response, two security metrics have been proposed that allow for evaluating defenses based on hand-crafted features often used in attacks. Recent state-of-the-art attacks, however, use deep learning models capable of automatically learning abstract feature representations, and thus the proposed metrics fall short once again. In this study we examine two security metrics and (1) show how these methods can be extended to evaluate deep learning-based website fingerprinting attacks, and (2) compare the security metrics and identify their shortcomings. 
    more » « less