skip to main content


Title: Multiscale mechanics of tissue‐engineered cartilage grown from human chondrocytes and human‐induced pluripotent stem cells
Abstract

Tissue‐engineered cartilage has shown promising results in the repair of focal cartilage defects. However, current clinical techniques rely on an extra surgical procedure to biopsy healthy cartilage to obtain human chondrocytes. Alternatively, induced pluripotent stem cells (iPSCs) have the ability to differentiate into chondrocytes and produce cartilaginous matrix without the need to biopsy healthy cartilage. However, the mechanical properties of tissue‐engineered cartilage with iPSCs are unknown and might be critical to long‐term tissue function and health. This study used confined compression, cartilage on glass tribology, and shear testing on a confocal microscope to assess the macroscale and microscale mechanical properties of two constructs seeded with either chondrocyte‐derived iPSCs (Ch‐iPSCs) or native human chondrocytes. Macroscale properties of Ch‐iPSC constructs provided similar or better mechanical properties than chondrocyte constructs. Under compression, Ch‐iPSC constructs had an aggregate modulus that was two times larger than chondrocyte constructs and was closer to native tissue. No differences in the shear modulus and friction coefficients were observed between Ch‐iPSC and chondrocyte constructs. On the microscale, Ch‐iPSC and chondrocyte constructs had different depth‐dependent mechanical properties, neither of which matches native tissue. These observed depth‐dependent differences may be important to the function of the implant. Overall, this comparison of multiple mechanical properties of Ch‐iPSC and chondrocyte constructs shows that using Ch‐iPSCs can produce equivalent or better global mechanical properties to chondrocytes. Therefore, iPSC‐seeded cartilage constructs could be a promising solution to repair focal cartilage defects. The chondrocyte constructs used in this study have been implanted into humans for clinical trials. Therefore, Ch‐iPSC constructs could also be used clinically in place of the current chondrocyte construct.

 
more » « less
Award ID(s):
1719875
NSF-PAR ID:
10183112
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Orthopaedic Research
Volume:
38
Issue:
9
ISSN:
0736-0266
Page Range / eLocation ID:
p. 1965-1973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cells embedded in the extracellular matrix of tissues play a critical role in maintaining homeostasis while promoting integration and regeneration following damage or disease. Emerging engineered biomaterials utilize decellularized extracellular matrix as a tissue‐specific support structure; however, many dense, structured biomaterials unfortunately demonstrate limited formability, fail to promote cell migration, and result in limited tissue repair. Here, a reinforced composite material of densely packed acellular extracellular matrix microparticles in a hydrogel, termed tissue clay, that can be molded and crosslinked to mimic native tissue architecture is developed. Hyaluronic acid‐based hydrogels are utilized, amorphously packed with acellular cartilage tissue particulated to ≈125–250 microns in diameter and defined a percolation threshold of 0.57 (v/v) beyond which the compressive modulus exceeded 300 kPa. Remarkably, primary chondrocytes recellularize particles within 48 h, a process driven by chemotaxis, exhibit distributed cellularity in large engineered composites, and express genes consistent with native cartilage repair. In addition, broad utility of tissue clays through recellularization and persistence of muscle, skin, and cartilage composites in an in vivo mouse model is demonstrated. The findings suggest optimal material architectures to balance concurrent demands for large‐scale mechanical properties while also supporting recellularization and integration of dense musculoskeletal and connective tissues.

     
    more » « less
  2. Abstract

    Extracellular-matrix composition impacts mechanical performance in native and engineered tissues. Previous studies showed collagen type I-agarose blends increased cell-matrix interactions and extracellular matrix production. However, long-term impacts on protein production and mechanical properties of engineered cartilage are unknown. Our objective was to characterize the effect of collagen type I on the matrix production of chondrocytes embedded in agarose hydrogels. We hypothesized that the addition of collagen would improve long-term mechanical properties and matrix production (e.g. collagen and glycosaminoglycans) through increased bioactivity. Agarose hydrogels (2% w/v) were mixed with varying concentrations of collagen type I (0, 2 and 5 mg/ml). Juvenile bovine chondrocytes were added to the hydrogels to assess matrix production over 4 weeks through biochemical assays, and mechanical properties were assessed through unconfined compression. We observed a dose-dependent effect on cell bioactivity, where 2 mg/ml of collagen improved bioactivity, but 5 mg/ml had a negative impact on bioactivity. This resulted in a higher modulus for scaffolds supplemented with lower collagen concentration as compared to the higher collagen concentration, but not when compared to the control. In conclusion, the addition of collagen to agarose constructs provided a dose-dependent impact on improving glycosaminoglycan production but did not improve collagen production or compressive mechanics.

     
    more » « less
  3. null (Ed.)
    The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue ( e.g. , the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient ( e.g. , a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold–bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed. 
    more » « less
  4. Abstract

    There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D‐bioplotted osteochondral scaffold design that can drive site‐specific tissue formation when seeded with adipose‐derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC‐seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold‐facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.

     
    more » « less
  5. Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology. 
    more » « less