skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Choosing preemption points to minimize typical running times
The problem of selecting "effective preemption points" in a program --- points in the code at which to permit preemption --- in order to minimize overall running time is considered. Prior solutions that have been proposed for this problem are based on workload models in which worst-case known upper bounds are assumed for the duration needed to perform preemptions at particular points in the code, and of the time needed to non-preemptively execute the code between preemption points. Since these solutions are based on worst-case assumptions, they tend to select effective preemption points in a conservative manner; consequently the overall execution time of the program may be needlessly large under most typical run-time circumstances. We consider a more general workload model in which "typical" values, as well as upper bounds, are assumed to be known for the preemption durations and the non-preemptive code-execution durations; given such information, we derive algorithms for the optimal placement of preemption points in a manner that minimizes the typical overall running time (while continuing to guarantee, if needed, upper bounds on the worst-case over-all running time). Both off-line solutions (in which all preemption points are selected prior to run-time) and on-line solutions (where the selection of some of the preemption points is made during run-time and therefore can exploit knowledge of the actual durations of prior preemptions and of the executions of already executed pieces of code) are presented and proved optimal.  more » « less
Award ID(s):
1724227
PAR ID:
10183410
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Conference on Real-Time Networks and Systems (RTNS)
Page Range / eLocation ID:
198 to 208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fixed preemption point (FPP) model has been studied as an alternative to fully preemptive and non-preemptive models, as restricting preemptions to specific, predictable locations within a task’s execution can simplify overhead analysis without disallowing preemptions entirely. Prior work has produced response-time analyses for global Earliest Deadline First (G-EDF) scheduling under the FPP model. However, scheduling decisions based solely on task deadlines may be too coarsegrained and may not lead to the lowest response times. In this paper, we propose global FPP EDF-like (G-FPP-EL) scheduling, which assigns a priority point in time for each non-preemptive region of a task. We adapt compliant-vector analysis (CVA) to our model and present general response-time bounds for G-FPPEL schedulers. We then demonstrate that it is possible to design G-FPP-EL schedulers acheiving response-time bounds optimal under CVA and argue that such schedulers should replace global FPP EDF. 
    more » « less
  2. We prove several hardness results for training depth-2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NP-hard already for a network with a single ReLU. We also prove NP-hardness for outputting a weighted sum of k ReLUs minimizing the squared error (for k>1) even in the realizable setting (i.e., when the labels are consistent with an unknown depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms of the desired additive error ϵ. To obtain our lower bounds, we use the Gap Exponential Time Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well known Densest k-Subgraph problem in subexponential time (these hypotheses are used separately in proving different lower bounds). For example, we prove that under reasonable hardness assumptions, any proper learning algorithm for finding the best fitting ReLU must run in time exponential in (1/epsilon)^2. Together with a previous work regarding improperly learning a ReLU (Goel et al., COLT'17), this implies the first separation between proper and improper algorithms for learning a ReLU. We also study the problem of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case) upper bounds on the running time needed to learn such networks both in the realizable and agnostic settings. Our upper bounds on the running time essentially matches our lower bounds in terms of the dependency on epsilon. 
    more » « less
  3. Pellizzoni, Rodolfo (Ed.)
    Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms. 
    more » « less
  4. Papadopoulos, Alessandro V (Ed.)
    The rigid timing requirement of real-time applications biases the analysis to focus on the worst-case performances. Such a focus cannot provide enough information to optimize the system’s typical resource and energy consumption. In this work, we study the real-time scheduling of parallel tasks on a multi-speed heterogeneous platform while minimizing their typical-case CPU energy consumption. Dynamic power management (DPM) policy is integrated to determine the minimum number of cores required for each task while guaranteeing worst-case execution requirements (under all circumstances). A Hungarian Algorithm-based task partitioning technique is proposed for clustered multi-core platforms, where all cores within the same cluster run at the same speed at any time, while different clusters may run at different speeds. To our knowledge, this is the first work aiming to minimize typical-case CPU energy consumption (while ensuring the worst-case timing correctness for all tasks under any execution condition) through DPM for parallel tasks in a clustered platform. We demonstrate the effectiveness of the proposed approach with existing power management techniques using experimental results and simulations. The experimental results conducted on the Intel Xeon 2680 v3 12-core platform show around 7%-30% additional energy savings. 
    more » « less
  5. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We consider two restricted cases of the planar dynamic convex hull problem with point insertions and deletions. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case, which is more general, assumes that the points in the deque constitute a simple path. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in O(log n) time, where n is the number of points in the current point set. The convex hull of the current point set can be reported in O(h+log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal. 
    more » « less