skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cybersickness in Virtual Reality: Examining the Influence of the Virtual Environments on Sex Susceptibility
The auspicious future of VR could be thwarted by cybersickness. A factor known to influence susceptibility is sex, with females often experiencing higher incidences. A mitigation strategy is to identify individuals who are more sensitive to cybersickness, such that interventions can be implemented before the onset of subjective symptoms. Such an approach could use predictive models that compare a user’s online kinematic body sway and physiological characteristics to data from individuals that reported cybersickness. If such predictive models can be developed, then one approach is altering the virtual environment (VE) based on this real-time data. The benefit of adjusting the VE is that it permits a susceptible individual to use the VR device with a reduction in adverse symptoms. One way to alter the VE is by manipulating optic flow, which can be described as the perceived visual motion of objects that are generated through an observer’s movements. Optic flow can be increased by increasing the level of details in the VE. That is to say, visual displays that contain a lot of details often give rise to stronger subjective sensations of movement. Thus, if the level of details in the VE is reduced, then this may reduce cybersickness reports.  more » « less
Award ID(s):
1734815
PAR ID:
10183467
Author(s) / Creator(s):
Date Published:
Journal Name:
SIGGRAPH Asia 2019 Doctoral Consortium
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Immersion into a virtual environment (VE) goften results in adverse symptoms including nausea, dizziness, and disorientation. These symptoms are an indicator of cybersickness,which is a condition similar to motion sickness experienced in VEs. In this paper, we hypothesized that administered cognitive distraction can accelerate the rate of habituation to a VE. This acceleration, therefore, can lower severity of cybersickness in fewer amount of immersions. To evaluate the impact of cognitive distraction on reducing the effects of cybersickness, we designed a VE and carried out a human subject study with control and experimental groups created through stratified random sampling.Subjects were immersed in our VE on four separate sessions, and our experimental group received cognitive distraction throughout the immersions. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and Presence Questionnaire (PQ). Upon comparing the average SSQ subgroups nausea, oculomotor, and disorientation scores reported by participants for each immersion session, we observed that our experimental group exhibited decrease in cybersickness to a greater extent than that of our control group. We completed t-tests for each of these comparisons, to find that these results are statistically insignificant. We plan to continue with this work by incorporating up to 30 total participants to clarify these findings. 
    more » « less
  2. Cybersickness – discomfort caused by virtual reality (VR) – remains a significant problem that negatively affects the user experience. Research on individual differences in cybersickness has typically focused on overall sickness intensity, but a detailed understanding should include whether individuals differ in the relative intensity of cybersickness symptoms. This study used latent profile analysis (LPA) to explore whether there exist groups of individuals who experience common patterns of cybersickness symptoms. Participants played a VR game for up to 20 min. LPA indicated three groups with low, medium, and high overall cybersickness. Further, there were similarities and differences in relative patterns of nausea, disorientation, and oculomotor symptoms between groups. Disorientation was lower than nausea and oculomotor symptoms for all three groups. Nausea and oculomotor were experienced at similar levels within the high and low sickness groups, but the medium sickness group experienced more nausea than oculomotor. Characteristics of group members varied across groups, including gender, virtual reality experience, video game experience, and history of motion sickness. These findings identify distinct individual experiences in symptomology that go beyond overall sickness intensity, which could enable future interventions that target certain groups of individuals and specific symptoms. 
    more » « less
  3. Cybersickness in Virtual Reality (VR) is a serious issue affecting the overall experience. Many research papers have investigated the causes of cybersickness and offered potential solutions for reducing cybersickness. In this paper, we demonstrate a method to reduce cybersickness by using a novel rendering technique in the virtual environment (VE)- Dynamic Mono-Stereoscopic Rendering System (DMSRS). The DMSRS system uses two different cameras to create a hybrid rendering that includes monoscopic and stereoscopic systems. By default, VEs are rendered using stereoscopic or monoscopic rendering exclusively. The results indicate that cybersickness decreased amongst users with little to no VR experience hindered when using the DMSRS. 
    more » « less
  4. This literature review examines the existing research into cybersickness reduction with regards to head mounted display use. Cybersickness refers to a collection of negative symptoms sometimes experienced as the result of being immersed in a virtual environment, such as nausea, dizziness, or eye strain. These symptoms can prevent individuals from utilizing virtual reality (VR) technologies, so discovering new methods of reducing them is critical. Our objective in this literature review is to provide a better picture of what cybersickness reduction techniques exist, the quantity of research demonstrating their effectiveness, and the virtual scenes testing has taken place in. This will help to direct researches towards promising avenues, and illuminate gaps in the literature. Following the preferred reporting items for systematic reviews and meta-analyses statement, we obtained a batch of 1,055 papers through the use of software aids. We selected 88 papers that examine potential cybersickness reduction approaches. Our acceptance criteria required that papers examined malleable conditions that could be conceivably modified for everyday use, examined techniques in conjunction with head mounted displays, and compared cybersickness levels between two or more user conditions. These papers were sorted into categories based on their general approach to combating cybersickness, and labeled based on the presence of statistically significant results, the use of virtual vehicles, the level of visual realism, and the virtual scene contents used in evaluation of their effectiveness. In doing this we have created a snapshot of the literature to date so that researchers may better understand what approaches are being researched, and the types of virtual experiences used in their evaluation. Keywords: Virtual reality cybersickness Simulator Sickness Visually induced motion sickness reduction Systematic review Head mounted display. 
    more » « less
  5. The uSucceed project aims to support neurodiverse individuals in the STEM workforce by utilizing Virtual Reality (VR) to deliver a customized training curriculum in CyberSecurity. This short paper delves into the design and methodology implemented by the uSucceed learning system. Preliminary usability test evaluations by neurodiverse individuals (n = 8) reveal critical insights into user experience, particularly regarding cybersickness and the usability of the uSucceed VR learning system. Usability findings revealed positive feedback on the immersive environment but highlighted issues with task navigation and inconsistent responses from the AI-driven pedagogical agent. Cybersickness levels ranged from low to moderate, with dizziness and eyestrain being the most reported symptoms. These results serve as a framework for further refining of the curriculum and system design to enhance usability. As the project evolves, it is moving towards the enhancement phase of the learning system’s development, with a focus on further advancement of the context-driven AI pedagogical agent. 
    more » « less