skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximally highly proximal flows
For G a Polish group, we consider G-flows which either contain a comeager orbit or have all orbits meager. We single out a class of flows, the maximally highly proximal (MHP) flows, for which this analysis is particularly nice. In the former case, we provide a complete structure theorem for flows containing comeager orbits, generalizing theorems of Melleray, Nguyen Van Thé, and Tsankov and of Ben Yaacov, Melleray, and Tsankov. In the latter, we show that any minimal MHP flow with all orbits meager has a metrizable factor with all orbits meager, thus ‘reflecting’ complicated dynamical behavior to metrizable flows. We then apply this to obtain a structure theorem for Polish groups whose universal minimal flow is distal.  more » « less
Award ID(s):
1803489
PAR ID:
10183735
Author(s) / Creator(s):
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
ISSN:
0143-3857
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Every topological group G has, up to isomorphism, a unique minimal G -flow that maps onto every minimal G -flow, the universal minimal flow $M(G).$ We show that if G has a compact normal subgroup K that acts freely on $M(G)$ and there exists a uniformly continuous cross-section from $G/K$ to $G,$ then the phase space of $M(G)$ is homeomorphic to the product of the phase space of $M(G/K)$ with K . Moreover, if either the left and right uniformities on G coincide or G is isomorphic to a semidirect product $$G/K\ltimes K$$ , we also recover the action, in the latter case extending a result of Kechris and Sokić. As an application, we show that the phase space of $M(G)$ for any totally disconnected locally compact Polish group G with a normal open compact subgroup is homeomorphic to a finite set, the Cantor set $$2^{\mathbb {N}}$$ , $$M(\mathbb {Z})$$ , or $$M(\mathbb {Z})\times 2^{\mathbb {N}}.$$ 
    more » « less
  2. We consider a non-stationary sequence of independent random isometries of a compact metrizable space. Assuming that there are no proper closed subsets with deterministic image, we establish a weak-* convergence to the unique invariant under isometries measure, ergodic theorem and large deviation type estimate. We also show that all the results can be carried over to the case of a random walk on a compact metrizable group. In particular, we prove a non-stationary analog of classical Itô–Kawada theorem and give a new alternative proof for the stationary case. 
    more » « less
  3. Abstract It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable. 
    more » « less
  4. We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3‑manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelman’s conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of 3‑manifolds—in particular to the generalized Smale conjecture—which will appear in a subsequent paper. 
    more » « less
  5. Abstract We define a natural state space and Markov process associated to the stochastic Yang–Mills heat flow in two dimensions. To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric. To construct the Markov process we show that the stochastic Yang–Mills heat flow takes values in our space of connections and use the “DeTurck trick” of introducing a time dependent gauge transformation to show invariance, in law, of the solution under gauge transformations. Our main tool for solving for the Yang–Mills heat flow is the theory of regularity structures and along the way we also develop a “basis-free” framework for applying the theory of regularity structures in the context of vector-valued noise – this provides a conceptual framework for interpreting several previous constructions and we expect this framework to be of independent interest. 
    more » « less