skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond Confidence Regions: Tight BayesianAmbiguity Sets for Robust MDPs
Robust MDPs (RMDPs) can be used to compute policies with provable worst-case guarantees in reinforcement learning. The quality and robustness of an RMDP solution are determined by the ambiguity set—the set of plausible transition probabilities—which is usually constructed as a multi-dimensional confidence region. Existing methods construct ambiguity sets as confidence regions using concentration inequalities which leads to overly conservative solutions. This paper proposes a new paradigm that can achieve better solutions with the same robustness guarantees without using confidence regions as ambiguity sets. To incorporate prior knowledge, our algorithms optimize the size and position of ambiguity sets using Bayesian inference. Our theoretical analysis shows the safety of the proposed method, and the empirical results demonstrate its practical promise  more » « less
Award ID(s):
1717368
PAR ID:
10183818
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Distributionally robust optimization (DRO) has been introduced for solving stochastic programs in which the distribution of the random variables is unknown and must be estimated by samples from that distribution. A key element of DRO is the construction of the ambiguity set, which is a set of distributions that contains the true distribution with a high probability. Assuming that the true distribution has a probability density function, we propose a class of ambiguity sets based on confidence bands of the true density function. As examples, we consider the shape-restricted confidence bands and the confidence bands constructed with a kernel density estimation technique. The former allows us to incorporate the prior knowledge of the shape of the underlying density function (e.g., unimodality and monotonicity), and the latter enables us to handle multidimensional cases. Furthermore, we establish the convergence of the optimal value of DRO to that of the underlying stochastic program as the sample size increases. The DRO with our ambiguity set involves functional decision variables and infinitely many constraints. To address this challenge, we apply duality theory to reformulate the DRO to a finite-dimensional stochastic program, which is amenable to a stochastic subgradient scheme as a solution method. 
    more » « less
  2. We develop fast distribution-free conformal prediction algorithms for obtaining multivalid coverage on exchangeable data in the batch setting. Multivalid coverage guarantees are stronger than marginal coverage guarantees in two ways: (1) They hold even conditional on group membership---that is, the target coverage level holds conditionally on membership in each of an arbitrary (potentially intersecting) group in a finite collection of regions in the feature space. (2) They hold even conditional on the value of the threshold used to produce the prediction set on a given example. In fact multivalid coverage guarantees hold even when conditioning on group membership and threshold value simultaneously. We give two algorithms: both take as input an arbitrary non-conformity score and an arbitrary collection of possibly intersecting groups , and then can equip arbitrary black-box predictors with prediction sets. Our first algorithm is a direct extension of quantile regression, needs to solve only a single convex minimization problem, and produces an estimator which has group-conditional guarantees for each group in . Our second algorithm is iterative, and gives the full guarantees of multivalid conformal prediction: prediction sets that are valid conditionally both on group membership and non-conformity threshold. We evaluate the performance of both of our algorithms in an extensive set of experiments. 
    more » « less
  3. The topic of robustness is experiencing a resurgence of interest in the statistical and machine learning communities. In particular, robust algorithms making use of the so-called median of means estimator were shown to satisfy strong performance guarantees for many problems, including estimation of the mean, covariance structure as well as linear regression. In this work, we propose an extension of the median of means principle to the Bayesian framework, leading to the notion of the robust posterior distribution. In particular, we (a) quantify robustness of this posterior to outliers, (b) show that it satisfies a version of the Bernstein-von Mises theorem that connects Bayesian credible sets to the traditional confidence intervals, and (c) demonstrate that our approach performs well in applications. 
    more » « less
  4. The topic of robustness is experiencing a resurgence of interest in the statistical and machine learning communities. In particular, robust algorithms making use of the so-called median of means estimator were shown to satisfy strong performance guarantees for many problems, including estimation of the mean, covariance structure as well as linear regression. In this work, we propose an extension of the median of means principle to the Bayesian framework, leading to the notion of the robust posterior distribution. In particular, we (a) quantify robustness of this posterior to outliers, (b) show that it satisfies a version of the Bernstein-von Mises theorem that connects Bayesian credible sets to the traditional confidence intervals, and (c) demonstrate that our approach performs well in applications. 
    more » « less
  5. Estimating the unknown reward functions driving agents' behavior is a central challenge in inverse games and reinforcement learning. This paper introduces a unified framework for reward function recovery in two-player zero-sum matrix games and Markov games with entropy regularization. Given observed player strategies and actions, we aim to reconstruct the underlying reward functions. This task is challenging due to the inherent ambiguity of inverse problems, the non-uniqueness of feasible rewards, and limited observational data coverage. To address these challenges, we establish reward function identifiability using the quantal response equilibrium (QRE) under linear assumptions. Building on this theoretical foundation, we propose an algorithm to learn reward from observed actions, designed to capture all plausible reward parameters by constructing confidence sets. Our algorithm works in both static and dynamic settings and is adaptable to incorporate other methods, such as Maximum Likelihood Estimation (MLE). We provide strong theoretical guarantees for the reliability and sample-efficiency of our algorithm. Empirical results demonstrate the framework’s effectiveness in accurately recovering reward functions across various scenarios, offering new insights into decision-making in competitive environments. 
    more » « less