skip to main content

Search for: All records

Award ID contains: 1717368

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robust Markov decision processes (MDPs) compute reliable solutions for dynamic decision problems with partially-known transition probabilities. Unfortunately, accounting for uncertainty in the transition probabilities significantly increases the computational complexity of solving robust MDPs, which limits their scalability. This paper describes new, efficient algorithms for solving the common class of robust MDPs with s- and sa-rectangular ambiguity sets defined by weighted L1 norms. We propose partial policy iteration, a new, efficient, flexible, and general policy iteration scheme for robust MDPs. We also propose fast methods for computing the robust Bellman operator in quasi-linear time, nearly matching the ordinary Bellman operator's linear complexity. Our experimental results indicate that the proposed methods are many orders of magnitude faster than the state-of-the-art approach, which uses linear programming solvers combined with a robust value iteration.
  2. Robust Markov decision processes (RMDPs) are a useful building block of robust reinforcement learning algorithms but can be hard to solve. This paper proposes a fast, exact algorithm for computing the Bellman operator for S-rectangular robust Markov decision processes with L∞-constrained rectangular ambiguity sets. The algorithm combines a novel homotopy continuation method with a bisection method to solve S-rectangular ambiguity in quasi-linear time in the number of states and actions. The algorithm improves on the cubic time required by leading general linear programming methods. Our experimental results confirm the practical viability of our method and show that it outperforms a leading commercial optimization package by several orders of magnitude.
  3. Inverse Reinforcement Learning of Interaction Dynamics fromDemonstrations