We consider an energy harvesting sensor transmit- ting latency-sensitive data over a fading channel. We aim to find the optimal transmission scheduling policy that minimizes the packet queuing delay given the available harvested energy. We formulate the problem as a Markov decision process (MDP) over a state-space spanned by the transmitter's buffer, battery, and channel states, and analyze the structural properties of the resulting optimal value function, which quantifies the long-run performance of the optimal scheduling policy. We show that the optimal value function (i) is non- decreasing and has increasing differences in the queue backlog; (ii) is non-increasing and has increasing differences in the battery state; and (iii) is submodular in the buffer and battery states. Our numerical results confirm these properties and demonstrate that the optimal scheduling policy outperforms a so-called greedy policy in terms of sensor outages, buffer overflows, energy efficiency, and queuing delay.
more »
« less
Transmission of Bursty Traffic over Fading Channels with Adaptive Decision Feedback
In this paper, cross-layer design of transmitting data packets over AWGN fading channel with adaptive decision feedback is considered. The transmitter decides the number of packets to transmit and the threshold of the decision feedback based on the queue length and the channel state. The transmit power is chosen such that the probability of error is below a pre-specified threshold. We model the system as a Markov decision process and use ideas from lattice theory to establish qualitative properties of optimal transmission strategies. In particular, we show that: (i) if the channel state remains the same and the number of packets in the queue increase, then the optimal policy either transmits more packets or uses a smaller decision feedback threshold or both; and (ii) if the number of packets in the queue remain the same and the channel quality deteriorates, then the optimal policy either transmits fewer packets or uses a larger threshold for the decision feedback or both. We also show under rate constraints that if the channel gains for all channel states are above a threshold, then the “or” in the above characterization can be replaced by “and”. Finally, we present a numerical example showing that adaptive decision feedback significantly improves the power-delay trade-off as compared with the case of no feedback.
more »
« less
- Award ID(s):
- 1718355
- PAR ID:
- 10183910
- Date Published:
- Journal Name:
- Proceedings of the Inter- national Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider a long-term average profit–maximizing admission control problem in an M/M/1 queuing system with unknown service and arrival rates. With a fixed reward collected upon service completion and a cost per unit of time enforced on customers waiting in the queue, a dispatcher decides upon arrivals whether to admit the arriving customer or not based on the full history of observations of the queue length of the system. Naor [Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15–24] shows that, if all the parameters of the model are known, then it is optimal to use a static threshold policy: admit if the queue length is less than a predetermined threshold and otherwise not. We propose a learning-based dispatching algorithm and characterize its regret with respect to optimal dispatch policies for the full-information model of Naor [Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15–24]. We show that the algorithm achieves an O(1) regret when all optimal thresholds with full information are nonzero and achieves an [Formula: see text] regret for any specified [Formula: see text] in the case that an optimal threshold with full information is 0 (i.e., an optimal policy is to reject all arrivals), where N is the number of arrivals.more » « less
-
We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelation-principle style argument, we find that it suffices to consider signaling mechanisms where the service provider sends a binary signal of "join" or "leave", and under which the equilibrium strategy of a customer is to follow the service provider's recommended action. (2) Optimality of threshold policies: For a given fixed price for service, we use the structural characterization to show that the optimal signaling mechanism can be obtained as a solution to a linear program with a countable number of variables and constraints. Under some mild technical conditions on the waiting costs, we establish that there exists an optimal signaling mechanism with a threshold structure, where service provider sends the "join" signal if the queue length is below a threshold, and "leave" otherwise. (In addition, at the threshold, the service provider randomizes.) For the special case of linear waiting costs, we derive an analytical expression for the optimal threshold i terms of the two branches of the Lambert-W function. (3) Revenue comparison: Finally, we show that with the optimal choice of the fixed price and using the corresponding optimal signaling mechanism, the service provider can achieve the same revenue as with the optimal state-dependent pricing mechanism in a fully-observable queue. This implies that in settings where state-dependent pricing is not feasible, the service provider can effectively use optimal signaling (with the optimal fixed price) to achieve the same revenue.more » « less
-
In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy. The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI associated threshold. With these, we develop an optimal structure-aware algorithm for each case.more » « less
-
null (Ed.)In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies.more » « less
An official website of the United States government

