skip to main content


Search for: All records

Award ID contains: 1655624

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human‐mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human‐mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human‐mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human‐mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.

     
    more » « less
  2. Abstract

    The typical owl family (Strigidae) comprises 194 species in 28 genera, 14 of which are monotypic. Relationships within and among genera in the typical owls have been challenging to discern because mitochondrial data have produced equivocal results and because many monotypic genera have been omitted from previous molecular analyses. Here, we collected and analyzed DNA sequences of ultraconserved elements (UCEs) from 43 species of typical owls to produce concatenated and multispecies coalescent-based phylogenetic hypotheses for all but one genus in the typical owl family. Our results reveal extensive paraphyly of taxonomic groups across phylogenies inferred using different analytical approaches and suggest the genera Athene, Otus, Asio, Megascops, Bubo, and Strix are paraphyletic, whereas Ninox and Glaucidium are polyphyletic. Secondary analyses of protein-coding mitochondrial genes harvested from off-target sequencing reads and mitochondrial genomes downloaded from GenBank generally support the extent of paraphyly we observe, although some disagreements exist at higher taxonomic levels between our nuclear and mitochondrial phylogenetic hypotheses. Overall, our results demonstrate the importance of taxon sampling for understanding and describing evolutionary relationships in this group, as well as the need for additional sampling, study, and taxonomic revision of typical owl species. Additionally, our findings highlight how both divergence and convergence in morphological characters have obscured our understanding of the evolutionary history of typical owls, particularly those with insular distributions.

     
    more » « less
  3. Zetka, M (Ed.)
    Abstract The clapper rail (Rallus crepitans), of the family Rallidae, is a secretive marsh bird species that is adapted for high salinity habitats. They are very similar in appearance to the closely related king rail (R. elegans), but while king rails are limited primarily to freshwater marshes, clapper rails are highly adapted to tolerate salt marshes. Both species can be found in brackish marshes where they freely hybridize, but the distribution of their respective habitats precludes the formation of a continuous hybrid zone and secondary contact can occur repeatedly. This system, thus, provides unique opportunities to investigate the underlying mechanisms driving their differential salinity tolerance as well as the maintenance of the species boundary between the 2 species. To facilitate these studies, we assembled a de novo reference genome assembly for a female clapper rail. Chicago and HiC libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome. The pipeline, however, did not recover the Z chromosome so a custom script was used to assemble the Z chromosome. We generated a near chromosome level assembly with a total length of 994.8 Mb comprising 13,226 scaffolds. The assembly had a scaffold N50 was 82.7 Mb, L50 of four, and had a BUSCO completeness score of 92%. This assembly is among the most contiguous genomes among the species in the family Rallidae. It will serve as an important tool in future studies on avian salinity tolerance, interspecific hybridization, and speciation. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  4. Sethuraman, A (Ed.)
    Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates. 
    more » « less
  5. The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.

     
    more » « less
  6. Abstract Tropical mountains feature marked species turnover along elevational gradients and across complex topography, resulting in great concentrations of avian biodiversity. In these landscapes, particularly among morphologically conserved and difficult to observe avian groups, species limits still require clarification. One such lineage is Scytalopus tapaculos, which are among the morphologically most conserved birds. Attention to their distinctive vocal repertoires and phylogenetic relationships has resulted in a proliferation of newly identified species, many of which are restricted range endemics. Here, we present a revised taxonomy and identify species limits among high-elevation populations of Scytalopus tapaculos inhabiting the Peruvian Andes. We employ an integrated framework using a combination of vocal information, mitochondrial DNA sequences, and appearance, gathered from our own fieldwork over the past 40 yr and supplemented with community-shared birdsong archives and museum specimens. We describe 3 new species endemic to Peru. Within all 3 of these species there is genetic differentiation, which in 2 species is mirrored by subtle geographic plumage and vocal variation. In a fourth species, Scytalopus schulenbergi, we document deep genetic divergence and plumage differences despite overall vocal similarity. We further propose that an extralimital taxon, Scytalopus opacus androstictus, be elevated to species rank, based on a diagnostic vocal character. Our results demonstrate that basic exploration and descriptive work using diverse data sources continues to identify new species of birds, particularly in tropical environs. 
    more » « less