skip to main content

Title: Survival dynamical systems: individual-level survival analysis from population-level epidemic models
In this paper, we show that solutions to ordinary differential equations describing the large-population limits of Markovian stochastic epidemic models can be interpreted as survival or cumulative hazard functions when analysing data on individuals sampled from the population. We refer to the individual-level survival and hazard functions derived from population-level equations as a survival dynamical system (SDS). To illustrate how population-level dynamics imply probability laws for individual-level infection and recovery times that can be used for statistical inference, we show numerical examples based on synthetic data. In these examples, we show that an SDS analysis compares favourably with a complete-data maximum-likelihood analysis. Finally, we use the SDS approach to analyse data from a 2009 influenza A(H1N1) outbreak at Washington State University.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Interface Focus
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting the occurrence of a particular event of interest at future time points is the primary goal of survival analysis. The presence of incomplete observations due to time limitations or loss of data traces is known as censoring which brings unique challenges in this domain and differentiates survival analysis from other standard regression methods. The popularly used survival analysis methods such as Cox proportional hazard model and parametric survival regression suffer from some strict assumptions and hypotheses that are not realistic in most of the real-world applications. To overcome the weaknesses of these two types of methods, in this paper, we reformulate the survival analysis problem as a multi-task learning problem and propose a new multi-task learning based formulation to predict the survival time by estimating the survival status at each time interval during the study duration. We propose an indicator matrix to enable the multi-task learning algorithm to handle censored instances and incorporate some of the important characteristics of survival problems such as non-negative non-increasing list structure into our model through max-heap projection. We employ the L2,1-norm penalty which enables the model to learn a shared representation across related tasks and hence select important features and alleviate over-fitting inmore »high-dimensional feature spaces; thus, reducing the prediction error of each task. To efficiently handle the two non-smooth constraints, in this paper, we propose an optimization method which employs Alternating Direction Method of Multipliers (ADMM) algorithm to solve the proposed multi-task learning problem. We demonstrate the performance of the proposed method using real-world microarray gene expression high-dimensional benchmark datasets and show that our method outperforms state-of-the-art methods.« less
  2. We develop a new Bayesian split population survival model for the analysis of survival data with misclassified event failures. Within political science survival data, right-censored survival cases are often erroneously misclassified as failure cases due to measurement error. Treating these cases as failure events within survival analyses will underestimate the duration of some events. This will bias coefficient estimates, especially in situations where such misclassification is associated with covariates of interest. Our split population survival estimator addresses this challenge by using a system of two equations to explicitly model the misclassification of failure events alongside a parametric survival process of interest. After deriving this model,we use Bayesian estimation via slice sampling to evaluate its performance with simulated data, and in several political science applications. We find that our proposed “misclassified failure” survival model allows researchers to accurately account for misclassified failure events within the contexts of civil war duration and democratic survival.
  3. Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agentsmore »for immunotherapy in breast cancer.« less
  4. PmagPy Online: Jupyter Notebooks, the PmagPy Software Package and the Magnetics Information Consortium (MagIC) Database Lisa Tauxe$^1$, Rupert Minnett$^2$, Nick Jarboe$^1$, Catherine Constable$^1$, Anthony Koppers$^2$, Lori Jonestrask$^1$, Nick Swanson-Hysell$^3$ $^1$Scripps Institution of Oceanography, United States of America; $^2$ Oregon State University; $^3$ University of California, Berkely; The Magnetics Information Consortium (MagIC), hosted at is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. It has a flexible, comprehensive data model that can accomodate most kinds of paleomagnetic data. The PmagPy software package is a cross-platform and open-source set of tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC, accommodating various levels of user expertise. It is available through Because PmagPy requires installation of Python, several non-standard Python modules, and the PmagPy software package, there is a speed bump for many practitioners on beginning to use the software. In order to make the software and MagIC more accessible to the broad spectrum of scientists interested in paleo and rock magnetism, we have prepared a set of Jupyter notebooks, hosted on which serve a set of purposes. 1) There is amore »complete course in Python for Earth Scientists, 2) a set of notebooks that introduce PmagPy (pulling the software package from the github repository) and illustrate how it can be used to create data products and figures for typical papers, and 3) show how to prepare data from the laboratory to upload into the MagIC database. The latter will satisfy expectations from NSF for data archiving and for example the AGU publication data archiving requirements. Getting started To use the PmagPy notebooks online, go to website at Create an Earthref account using your ORCID and log on. [This allows you to keep files in a private work space.] Open the PmagPy Online - Setup notebook and execute the two cells. Then click on File = > Open and click on the PmagPy_Online folder. Open the PmagPy_online notebook and work through the examples. There are other notebooks that are useful for the working paleomagnetist. Alternatively, you can install Python and the PmagPy software package on your computer (see for instructions). Follow the instructions for "Full PmagPy install and update" through section 1.4 (Quickstart with PmagPy notebooks). This notebook is in the collection of PmagPy notebooks. Overview of MagIC The Magnetics Information Consortium (MagIC), hosted at is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. Its datamodel is fully described here: Each contribution is associated with a publication via the DOI. There are nine data tables: contribution: metadata of the associated publication. locations: metadata for locations, which are groups of sites (e.g., stratigraphic section, region, etc.) sites: metadata and derived data at the site level (units with a common expectation) samples: metadata and derived data at the sample level. specimens: metadata and derived data at the specimen level. criteria: criteria by which data are deemed acceptable ages: ages and metadata for sites/samples/specimens images: associated images and plots. Overview of PmagPy The functionality of PmagPy is demonstrated within notebooks in the PmagPy repository: PmagPy_online.ipynb: serves as an introdution to PmagPy and MagIC (this conference). It highlights the link between PmagPy and the Findable Accessible Interoperable Reusabe (FAIR) database maintained by the Magnetics Information Consortium (MagIC) at Other notebooks of interest are: PmagPy_calculations.ipynb: demonstrates many of the PmagPy calculation functions such as those that rotate directions, return statistical parameters, and simulate data from specified distributions. PmagPy_plots_analysis.ipynb: demonstrates PmagPy functions that can be used to visual data as well as those that conduct statistical tests that have associated visualizations. PmagPy_MagIC.ipynb: demonstrates how PmagPy can be used to read and write data to and from the MagIC database format including conversion from many individual lab measurement file formats. Please see also our YouTube channel with more presentations from the 2020 MagIC workshop here:« less
  5. Summary

    The paper studies estimation of partially linear hazard regression models with varying coefficients for multivariate survival data. A profile pseudo-partial-likelihood estimation method is proposed. The estimation of the parameters of the linear part is accomplished via maximization of the profile pseudo-partial-likelihood, whereas the varying-coefficient functions are considered as nuisance parameters that are profiled out of the likelihood. It is shown that the estimators of the parameters are root n consistent and the estimators of the non-parametric coefficient functions achieve optimal convergence rates. Asymptotic normality is obtained for the estimators of the finite parameters and varying-coefficient functions. Consistent estimators of the asymptotic variances are derived and empirically tested, which facilitate inference for the model. We prove that the varying-coefficient functions can be estimated as well as if the parametric components were known and the failure times within each subject were independent. Simulations are conducted to demonstrate the performance of the estimators proposed. A real data set is analysed to illustrate the methodology proposed.