skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Domain Specific Computing Systems
Domain specific computing is an idea that has been pro-posed as a path forward given the slowing of Moore’s Law and the breakdown of Dennard scaling. Two fundamental questions include: (1) how does one define a domain; and (2) how does one go about architecting hardware that performs well for that domain? We present our preliminary work towards answering these questions.  more » « less
Award ID(s):
1763503
PAR ID:
10183996
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)
Page Range / eLocation ID:
221 to 221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As scientists, we are at least as excited about the open questions—the things we do not know—as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such “rules” conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring. 
    more » « less
  2. Abstract Contrasts in bedrock erodibility have been shown to drive landscape transience, but it is unclear whether horizontal tectonic displacements would enhance such effects. Furthermore, one might expect these factors to coexist, as tectonic convergence helps to create rock strength contrasts in settings like the Himalayas. How do landscapes respond when contacts separating units are raised vertically and shifted horizontally by tectonics? To evaluate such questions, we use landscape evolution models to simulate the exposure of a weak unit in a landscape equilibrated to a strong unit. We explore different simulations varying factors like weak unit erodibility, diffusivity, contact dip, and topographic advection rate. In these simulations, we assess the migration of the main drainage divide as well as changes in channel steepness and topographic relief within the strong unit. Our model results show that the horizontal movement of a contact does enhance drainage divide migration and increases in channel steepness, especially when the contact migrates along rivers with low drainage areas. Across all simulations, however, increases in topographic relief are minimal and temporary. Unexpected behaviors emerge in our simulations in which the mass balance of topography is influenced by horizontal tectonic displacements. For example, the exposure of the weak unit causes a gradual decline in the steepness of the strong unit. We interpret such behaviors to be artifacts related to the fixed boundaries of our domain and likely unrepresentative of natural landscapes. Instead, we focus on simulations where advection does not influence the mass balance of topography. These models show that the horizontal movement of contacts can enhance landscape transience, but this transience is marked by features one can use as diagnostic characteristics. Detecting such characteristics in natural landscapes featuring tectonic convergence would be difficult, however, due to the natural coincidence of factors such as faulting, folding, and landslides. 
    more » « less
  3. Proper statistical modeling incorporates domain theory about how concepts relate and details of how data were measured. However, data analysts currently lack tool support for recording and reasoning about domain assumptions, data collection, and modeling choices in an integrated manner, leading to mistakes that can compromise scientific validity. For instance, generalized linear mixed-effects models (GLMMs) help answer complex research questions, but omitting random effects impairs the generalizability of results. To address this need, we present Tisane, a mixed-initiative system for authoring generalized linear models with and without mixed-effects. Tisane introduces a study design specification language for expressing and asking questions about relationships between variables. Tisane contributes an interactive compilation process that represents relationships in a graph, infers candidate statistical models, and asks follow-up questions to disambiguate user queries to construct a valid model. In case studies with three researchers, we find that Tisane helps them focus on their goals and assumptions while avoiding past mistakes. 
    more » « less
  4. We propose a survival analysis approach for discovering and characterizing user behavior and risks for lending protocols in decentralized finance (DeFi). We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We illustrate our approach using transactions in Aave, one of the largest lending protocols. We develop a DeFi survival analysis pipeline that first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods modified for competing risks when appropriate, such as Kaplan–Meier survival curves, cumulative incidence functions, Cox hazard regression, and Fine-Gray models for sub-distribution hazards to gain insights into usage patterns and risks within the protocol. We show how, by varying the index and outcome events as well as covariates, we can use DeFi survival analysis to answer questions like “How does loan size affect the repayment schedule of the loan?”; “How does loan size affect the likelihood that an account gets liquidated?”; “How does user behavior vary between Aave markets?”; “How has user behavior in Aave varied from quarter to quarter?” The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions. 
    more » « less
  5. The questions we ask and how we ask them will make a difference in how successful we are in meetings, in collaborations and in our careers as statisticians and data scientists. What makes a question good and what makes a good question great? Great questions elicit information useful for accomplishing the tasks of a project and strengthen the statistician–domain expert relationship. Great questions have three parts: the question, the answer and the paraphrasing of the answer to create shared understanding. We discuss three strategies for asking great questions: preface questions with statements about the intent behind asking the question; follow the question with behaviours and actions consistent with the prefaced words including actions such as listening, paraphrasing and summarizing; and model a collaborative relationship via the asking of a great question. We describe the methods and results of a study that shows how questions can be assessed, that statisticians can learn to ask great questions and that those who have learned this skill consider it to be valuable for their careers. We provide practical guidelines for learning how to ask great questions so that statisticians can improve their collaboration skills and thus increase their impact to help address societal challenges. 
    more » « less